载流子包络相是否影响中性双原子分子的电离位点?

IF 1.7 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Atoms Pub Date : 2023-04-04 DOI:10.3390/atoms11040067
Alex J. Schimmoller, Harrison Pasquinilli, A. Landsman
{"title":"载流子包络相是否影响中性双原子分子的电离位点?","authors":"Alex J. Schimmoller, Harrison Pasquinilli, A. Landsman","doi":"10.3390/atoms11040067","DOIUrl":null,"url":null,"abstract":"A recent work shows how to extract the ionization site of a neutral diatomic molecule by comparing Quantum Trajectory Monte Carlo (QTMC) simulations with experimental measurements of the final electron momenta distribution. This method was applied to an experiment using a 40-femtosecond infrared pulse, finding that a downfield atom is roughly twice as likely to be ionized as an upfield atom in a neutral nitrogen molecule. However, an open question remains as to whether an assumption of the zero carrier envelope phase (CEP) used in the above work is still valid for short, few-cycle pulses where the CEP can play a large role. Given experimentalists’ limited control over the CEP and its dramatic effect on electron momenta after ionization, it is desirable to see what influence the CEP may have in determining the ionization site. In this paper, we employ QTMC techniques to simulate strong-field ionization and electron propagation from neutral N2 using an intense 6-cycle laser pulse with various CEP values. Comparing simulated electron momenta to experimental data indicates that the ratio of down-to-upfield ions remains roughly 2:1 regardless of the CEP. This confirms that the ionization site of a neutral molecule is determined predominantly by the laser frequency and intensity, as well as the ground-state molecular wavefunction, and is largely independent of the CEP.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does Carrier Envelope Phase Affect the Ionization Site in a Neutral Diatomic Molecule?\",\"authors\":\"Alex J. Schimmoller, Harrison Pasquinilli, A. Landsman\",\"doi\":\"10.3390/atoms11040067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recent work shows how to extract the ionization site of a neutral diatomic molecule by comparing Quantum Trajectory Monte Carlo (QTMC) simulations with experimental measurements of the final electron momenta distribution. This method was applied to an experiment using a 40-femtosecond infrared pulse, finding that a downfield atom is roughly twice as likely to be ionized as an upfield atom in a neutral nitrogen molecule. However, an open question remains as to whether an assumption of the zero carrier envelope phase (CEP) used in the above work is still valid for short, few-cycle pulses where the CEP can play a large role. Given experimentalists’ limited control over the CEP and its dramatic effect on electron momenta after ionization, it is desirable to see what influence the CEP may have in determining the ionization site. In this paper, we employ QTMC techniques to simulate strong-field ionization and electron propagation from neutral N2 using an intense 6-cycle laser pulse with various CEP values. Comparing simulated electron momenta to experimental data indicates that the ratio of down-to-upfield ions remains roughly 2:1 regardless of the CEP. This confirms that the ionization site of a neutral molecule is determined predominantly by the laser frequency and intensity, as well as the ground-state molecular wavefunction, and is largely independent of the CEP.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11040067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11040067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

最近的一项工作展示了如何通过比较量子轨迹蒙特卡罗(QTMC)模拟和最终电子动量分布的实验测量来提取中性双原子分子的电离位点。这种方法被应用到一个40飞秒红外脉冲的实验中,发现在中性氮分子中,下场原子被电离的可能性大约是上场原子的两倍。然而,一个悬而未决的问题仍然是,在上述工作中使用的零载波包络相位(CEP)假设是否仍然适用于CEP可以发挥较大作用的短、少周期脉冲。考虑到实验人员对CEP的控制有限,以及它在电离后对电子动量的巨大影响,我们希望看到CEP在确定电离位置方面可能有什么影响。在本文中,我们采用QTMC技术,利用具有不同CEP值的强6周期激光脉冲,模拟了中性N2的强场电离和电子传播。将模拟电子动量与实验数据进行比较表明,无论CEP如何,下场离子与上场离子的比例大致为2:1。这证实了中性分子的电离位置主要由激光频率和强度以及基态分子波函数决定,并且在很大程度上与CEP无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Does Carrier Envelope Phase Affect the Ionization Site in a Neutral Diatomic Molecule?
A recent work shows how to extract the ionization site of a neutral diatomic molecule by comparing Quantum Trajectory Monte Carlo (QTMC) simulations with experimental measurements of the final electron momenta distribution. This method was applied to an experiment using a 40-femtosecond infrared pulse, finding that a downfield atom is roughly twice as likely to be ionized as an upfield atom in a neutral nitrogen molecule. However, an open question remains as to whether an assumption of the zero carrier envelope phase (CEP) used in the above work is still valid for short, few-cycle pulses where the CEP can play a large role. Given experimentalists’ limited control over the CEP and its dramatic effect on electron momenta after ionization, it is desirable to see what influence the CEP may have in determining the ionization site. In this paper, we employ QTMC techniques to simulate strong-field ionization and electron propagation from neutral N2 using an intense 6-cycle laser pulse with various CEP values. Comparing simulated electron momenta to experimental data indicates that the ratio of down-to-upfield ions remains roughly 2:1 regardless of the CEP. This confirms that the ionization site of a neutral molecule is determined predominantly by the laser frequency and intensity, as well as the ground-state molecular wavefunction, and is largely independent of the CEP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atoms
Atoms Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍: Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信