Artin群的根系统、对称性和线性表示

Q4 Mathematics
O. Geneste, Jean-Yves H'ee, L. Paris
{"title":"Artin群的根系统、对称性和线性表示","authors":"O. Geneste, Jean-Yves H'ee, L. Paris","doi":"10.5802/ambp.381","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma$ be a Coxeter graph, let $W$ be its associated Coxeter group, and let $G$ be a group of symmetries of $\\Gamma$.Recall that, by a theorem of H{\\'e}e and M\\\"uhlherr, $W^G$ is a Coxeter group associated to some Coxeter graph $\\hat \\Gamma$.We denote by $\\Phi^+$ the set of positive roots of $\\Gamma$ and by $\\hat \\Phi^+$ the set of positive roots of $\\hat \\Gamma$.Let $E$ be a vector space over a field $\\K$ having a basis in one-to-one correspondence with $\\Phi^+$.The action of $G$ on $\\Gamma$ induces an action of $G$ on $\\Phi^+$, and therefore on $E$.We show that $E^G$ contains a linearly independent family of vectors naturally in one-to-one correspondence with $\\hat \\Phi^+$ and we determine exactly when this family is a basis of $E^G$.This question is motivated by the construction of Krammer's style linear representations for non simply laced Artin groups.","PeriodicalId":52347,"journal":{"name":"Annales Mathematiques Blaise Pascal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Root systems, symmetries and linear representations of Artin groups\",\"authors\":\"O. Geneste, Jean-Yves H'ee, L. Paris\",\"doi\":\"10.5802/ambp.381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Gamma$ be a Coxeter graph, let $W$ be its associated Coxeter group, and let $G$ be a group of symmetries of $\\\\Gamma$.Recall that, by a theorem of H{\\\\'e}e and M\\\\\\\"uhlherr, $W^G$ is a Coxeter group associated to some Coxeter graph $\\\\hat \\\\Gamma$.We denote by $\\\\Phi^+$ the set of positive roots of $\\\\Gamma$ and by $\\\\hat \\\\Phi^+$ the set of positive roots of $\\\\hat \\\\Gamma$.Let $E$ be a vector space over a field $\\\\K$ having a basis in one-to-one correspondence with $\\\\Phi^+$.The action of $G$ on $\\\\Gamma$ induces an action of $G$ on $\\\\Phi^+$, and therefore on $E$.We show that $E^G$ contains a linearly independent family of vectors naturally in one-to-one correspondence with $\\\\hat \\\\Phi^+$ and we determine exactly when this family is a basis of $E^G$.This question is motivated by the construction of Krammer's style linear representations for non simply laced Artin groups.\",\"PeriodicalId\":52347,\"journal\":{\"name\":\"Annales Mathematiques Blaise Pascal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques Blaise Pascal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ambp.381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques Blaise Pascal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ambp.381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设$\Gamma$是Coxeter图,设$W$是其关联的Coxeter群,设$G$是$\Gamma的一组对称性。回想一下,通过H和M的一个定理\“呃,$W^G$是一个与某些Coxeter图$\hat\Gamma$相关的Coxeter群。我们用$\Phi^+$表示$\Gamma$的正根集,用$\hat\Phi^+$指示$\hat\ Gamma$的正根集。设$E$是域$\K$上的向量空间,其基与$\Phi ^+$一一对应。$G$对$\Gamma的作用会引起$G$在$\Phi-^+$上的作用,因此也会引起$E$的作用证明$E^G$包含一个与$\hat\Phi^+$自然一一对应的线性独立向量族,并且我们确切地确定了这个族何时是$E^G$的基。这个问题的动机是构造非单格Artin群的Krammer风格的线性表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Root systems, symmetries and linear representations of Artin groups
Let $\Gamma$ be a Coxeter graph, let $W$ be its associated Coxeter group, and let $G$ be a group of symmetries of $\Gamma$.Recall that, by a theorem of H{\'e}e and M\"uhlherr, $W^G$ is a Coxeter group associated to some Coxeter graph $\hat \Gamma$.We denote by $\Phi^+$ the set of positive roots of $\Gamma$ and by $\hat \Phi^+$ the set of positive roots of $\hat \Gamma$.Let $E$ be a vector space over a field $\K$ having a basis in one-to-one correspondence with $\Phi^+$.The action of $G$ on $\Gamma$ induces an action of $G$ on $\Phi^+$, and therefore on $E$.We show that $E^G$ contains a linearly independent family of vectors naturally in one-to-one correspondence with $\hat \Phi^+$ and we determine exactly when this family is a basis of $E^G$.This question is motivated by the construction of Krammer's style linear representations for non simply laced Artin groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematiques Blaise Pascal
Annales Mathematiques Blaise Pascal Mathematics-Algebra and Number Theory
CiteScore
0.50
自引率
0.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信