{"title":"使用较小拷贝数变异调用阈值对染色体微阵列数据进行重新分析,确定四例ARID1B、EHMT1和FOXP1基因杂合子多外显子缺失病例","authors":"Noriko Kubota, Ryojun Takeda, Jun Kobayashi, Eiko Hidaka, Eriko Nishi, Kyoko Takano, Keiko Wakui","doi":"10.1159/000530252","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Chromosomal microarray (CMA) is a highly accurate and established method for detecting copy number variations (CNVs) in clinical genetic testing. CNVs are important etiological factors for disorders such as intellectual disability, developmental delay, and multiple congenital anomalies. Recently developed analytical methods have facilitated the identification of smaller CNVs. Therefore, reanalyzing CMA data using a smaller CNV calling threshold may yield useful information. However, this method was left to the discretion of each institution.</p><p><strong>Methods: </strong>We reanalyzed the CMA data of 131 patients using a smaller CNV call threshold: 50 kb 50 probes for gain and 25 kb 25 probes for loss. We interpreted the reanalyzed CNVs based on the most recently available information. In the reanalysis, we filtered the data using the Clinical Genome Resource dosage sensitivity gene list as an index to quickly and efficiently check morbid genes.</p><p><strong>Results: </strong>The number of copy number loss was approximately 20 times greater, and copy number gain was approximately three times greater compared to those in the previous analysis. We detected new likely pathogenic CNVs in four participants: a 236.5 kb loss within <i>ARID1B</i>, a 50.6 kb loss including <i>EHMT1</i>, a 46.5 kb loss including <i>EHMT1</i>, and an 89.1 kb loss within the <i>FOXP1</i> gene.</p><p><strong>Conclusion: </strong>The method employed in this study is simple and effective for CMA data reanalysis using a smaller CNV call threshold. Thus, this method is efficient for both ongoing and repeated analyses. This study may stimulate further discussion of reanalysis methodology in clinical laboratories.</p>","PeriodicalId":48566,"journal":{"name":"Molecular Syndromology","volume":"14 1","pages":"394-404"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601822/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reanalysis of Chromosomal Microarray Data Using a Smaller Copy Number Variant Call Threshold Identifies Four Cases with Heterozygous Multiexon Deletions of ARID1B, EHMT1, and FOXP1 Genes.\",\"authors\":\"Noriko Kubota, Ryojun Takeda, Jun Kobayashi, Eiko Hidaka, Eriko Nishi, Kyoko Takano, Keiko Wakui\",\"doi\":\"10.1159/000530252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Chromosomal microarray (CMA) is a highly accurate and established method for detecting copy number variations (CNVs) in clinical genetic testing. CNVs are important etiological factors for disorders such as intellectual disability, developmental delay, and multiple congenital anomalies. Recently developed analytical methods have facilitated the identification of smaller CNVs. Therefore, reanalyzing CMA data using a smaller CNV calling threshold may yield useful information. However, this method was left to the discretion of each institution.</p><p><strong>Methods: </strong>We reanalyzed the CMA data of 131 patients using a smaller CNV call threshold: 50 kb 50 probes for gain and 25 kb 25 probes for loss. We interpreted the reanalyzed CNVs based on the most recently available information. In the reanalysis, we filtered the data using the Clinical Genome Resource dosage sensitivity gene list as an index to quickly and efficiently check morbid genes.</p><p><strong>Results: </strong>The number of copy number loss was approximately 20 times greater, and copy number gain was approximately three times greater compared to those in the previous analysis. We detected new likely pathogenic CNVs in four participants: a 236.5 kb loss within <i>ARID1B</i>, a 50.6 kb loss including <i>EHMT1</i>, a 46.5 kb loss including <i>EHMT1</i>, and an 89.1 kb loss within the <i>FOXP1</i> gene.</p><p><strong>Conclusion: </strong>The method employed in this study is simple and effective for CMA data reanalysis using a smaller CNV call threshold. Thus, this method is efficient for both ongoing and repeated analyses. This study may stimulate further discussion of reanalysis methodology in clinical laboratories.</p>\",\"PeriodicalId\":48566,\"journal\":{\"name\":\"Molecular Syndromology\",\"volume\":\"14 1\",\"pages\":\"394-404\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601822/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Syndromology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000530252\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Syndromology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000530252","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Reanalysis of Chromosomal Microarray Data Using a Smaller Copy Number Variant Call Threshold Identifies Four Cases with Heterozygous Multiexon Deletions of ARID1B, EHMT1, and FOXP1 Genes.
Introduction: Chromosomal microarray (CMA) is a highly accurate and established method for detecting copy number variations (CNVs) in clinical genetic testing. CNVs are important etiological factors for disorders such as intellectual disability, developmental delay, and multiple congenital anomalies. Recently developed analytical methods have facilitated the identification of smaller CNVs. Therefore, reanalyzing CMA data using a smaller CNV calling threshold may yield useful information. However, this method was left to the discretion of each institution.
Methods: We reanalyzed the CMA data of 131 patients using a smaller CNV call threshold: 50 kb 50 probes for gain and 25 kb 25 probes for loss. We interpreted the reanalyzed CNVs based on the most recently available information. In the reanalysis, we filtered the data using the Clinical Genome Resource dosage sensitivity gene list as an index to quickly and efficiently check morbid genes.
Results: The number of copy number loss was approximately 20 times greater, and copy number gain was approximately three times greater compared to those in the previous analysis. We detected new likely pathogenic CNVs in four participants: a 236.5 kb loss within ARID1B, a 50.6 kb loss including EHMT1, a 46.5 kb loss including EHMT1, and an 89.1 kb loss within the FOXP1 gene.
Conclusion: The method employed in this study is simple and effective for CMA data reanalysis using a smaller CNV call threshold. Thus, this method is efficient for both ongoing and repeated analyses. This study may stimulate further discussion of reanalysis methodology in clinical laboratories.
期刊介绍:
''Molecular Syndromology'' publishes high-quality research articles, short reports and reviews on common and rare genetic syndromes, aiming to increase clinical understanding through molecular insights. Topics of particular interest are the molecular basis of genetic syndromes, genotype-phenotype correlation, natural history, strategies in disease management and novel therapeutic approaches based on molecular findings. Research on model systems is also welcome, especially when it is obviously relevant to human genetics. With high-quality reviews on current topics the journal aims to facilitate translation of research findings to a clinical setting while also stimulating further research on clinically relevant questions. The journal targets not only medical geneticists and basic biomedical researchers, but also clinicians dealing with genetic syndromes. With four Associate Editors from three continents and a broad international Editorial Board the journal welcomes submissions covering the latest research from around the world.