{"title":"权重加倍诱导的加权Bergman空间上的加权复合算子","authors":"Juntao Du, Songxiao Li, Yecheng Shi","doi":"10.7146/math.scand.a-119741","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the boundedness, compactness, essential norm and the Schatten class of weighted composition operators uCφ on Bergman type spaces Apω induced by a doubling weight ω. Let X={u∈H(D):uCφ:Apω→Apω is bounded}. For some regular weights ω, we obtain that X=H∞ if and only if ϕ is a finite Blaschke product.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Weighted composition operators on weighted Bergman spaces induced by doubling weights\",\"authors\":\"Juntao Du, Songxiao Li, Yecheng Shi\",\"doi\":\"10.7146/math.scand.a-119741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the boundedness, compactness, essential norm and the Schatten class of weighted composition operators uCφ on Bergman type spaces Apω induced by a doubling weight ω. Let X={u∈H(D):uCφ:Apω→Apω is bounded}. For some regular weights ω, we obtain that X=H∞ if and only if ϕ is a finite Blaschke product.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-119741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-119741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weighted composition operators on weighted Bergman spaces induced by doubling weights
In this paper, we investigate the boundedness, compactness, essential norm and the Schatten class of weighted composition operators uCφ on Bergman type spaces Apω induced by a doubling weight ω. Let X={u∈H(D):uCφ:Apω→Apω is bounded}. For some regular weights ω, we obtain that X=H∞ if and only if ϕ is a finite Blaschke product.