某些非自由作用的概有限性与同源性

Pub Date : 2020-07-05 DOI:10.4171/ggd/656
E. Ortega, Eduardo Scarparo
{"title":"某些非自由作用的概有限性与同源性","authors":"E. Ortega, Eduardo Scarparo","doi":"10.4171/ggd/656","DOIUrl":null,"url":null,"abstract":"We show that Cantor minimal $\\mathbb{Z}\\rtimes\\mathbb{Z}_2$-systems and essentially free amenable odometers are almost finite. We also compute the homology groups of Cantor minimal $\\mathbb{Z}\\rtimes\\mathbb{Z}_2$-systems and show that the associated transformation groupoids satisfy the HK conjecture if and only if the action is free.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Almost finiteness and homology of certain non-free actions\",\"authors\":\"E. Ortega, Eduardo Scarparo\",\"doi\":\"10.4171/ggd/656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that Cantor minimal $\\\\mathbb{Z}\\\\rtimes\\\\mathbb{Z}_2$-systems and essentially free amenable odometers are almost finite. We also compute the homology groups of Cantor minimal $\\\\mathbb{Z}\\\\rtimes\\\\mathbb{Z}_2$-systems and show that the associated transformation groupoids satisfy the HK conjecture if and only if the action is free.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ggd/656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们证明了康托极小$\mathbb{Z}\r乘以\mathbb{Z}_2$-系统和本质上自由可服从的里程计几乎是有限的。我们还计算了Cantor极小$\mathbb{Z}\r乘以\mathbb{Z}_2$-系统的同调群,并证明了相关的变换群满足HK猜想当且仅当作用是自由的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Almost finiteness and homology of certain non-free actions
We show that Cantor minimal $\mathbb{Z}\rtimes\mathbb{Z}_2$-systems and essentially free amenable odometers are almost finite. We also compute the homology groups of Cantor minimal $\mathbb{Z}\rtimes\mathbb{Z}_2$-systems and show that the associated transformation groupoids satisfy the HK conjecture if and only if the action is free.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信