一般线性群的Jordan正则生成元

Q4 Mathematics
M. Sahai, R. Sharma, P. Kumari
{"title":"一般线性群的Jordan正则生成元","authors":"M. Sahai, R. Sharma, P. Kumari","doi":"10.18311/JIMS/2018/20971","DOIUrl":null,"url":null,"abstract":"In this article Jordan regular units have been introduced. In particular, it is proved that for n ≥ 2, the general linear group GL(2; F<sub>2<sup>n</sup></sub>) can be generated by Jordan regular units. Further, presentations of GL(2, F<sub>4</sub>); GL(2, F<sub>8</sub>); GL(2, F<sub>16</sub>) and GL(2, F<sub>32</sub>) have been obtained having Jordan regular units as generators.","PeriodicalId":38246,"journal":{"name":"Journal of the Indian Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Jordan Regular Generators of General Linear Groups\",\"authors\":\"M. Sahai, R. Sharma, P. Kumari\",\"doi\":\"10.18311/JIMS/2018/20971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article Jordan regular units have been introduced. In particular, it is proved that for n ≥ 2, the general linear group GL(2; F<sub>2<sup>n</sup></sub>) can be generated by Jordan regular units. Further, presentations of GL(2, F<sub>4</sub>); GL(2, F<sub>8</sub>); GL(2, F<sub>16</sub>) and GL(2, F<sub>32</sub>) have been obtained having Jordan regular units as generators.\",\"PeriodicalId\":38246,\"journal\":{\"name\":\"Journal of the Indian Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/JIMS/2018/20971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/JIMS/2018/20971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了约旦正规部队。特别地,证明了对于n≥2,一般线性群GL(2;F2n)可以由Jordan正则单元生成。此外,GL(2,F4)的演示;GL(2,F8);已经获得了具有Jordan正则单元作为生成器的GL(2,F16)和GL(2、F32)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jordan Regular Generators of General Linear Groups
In this article Jordan regular units have been introduced. In particular, it is proved that for n ≥ 2, the general linear group GL(2; F2n) can be generated by Jordan regular units. Further, presentations of GL(2, F4); GL(2, F8); GL(2, F16) and GL(2, F32) have been obtained having Jordan regular units as generators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Indian Mathematical Society
Journal of the Indian Mathematical Society Mathematics-Mathematics (all)
CiteScore
0.50
自引率
0.00%
发文量
32
期刊介绍: The Society began publishing Progress Reports right from 1907 and then the Journal from 1908 (The 1908 and 1909 issues of the Journal are entitled "The Journal of the Indian Mathematical Club"). From 1910 onwards,it is published as its current title ''the Journal of Indian Mathematical Society. The four issues of the Journal constitute a single volume and it is published in two parts: issues 1 and 2 (January to June) as one part and issues 3 and 4 (July to December) as the second part. The four issues of the Mathematics Student (another periodical of the Society) are published as a single yearly volume. Only the original research papers of high quality are published in the Journal of Indian Mathematical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信