有界弹性域中的均匀应力包裹体

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Ming Dai
{"title":"有界弹性域中的均匀应力包裹体","authors":"Ming Dai","doi":"10.1007/s10659-023-10025-w","DOIUrl":null,"url":null,"abstract":"<div><p>A single elliptical or ellipsoidal inclusion with an arbitrary uniform eigenstrain is known to achieve a constant stress field when embedded in an elastic medium provided the edge of the medium is sufficiently far from the inclusion (i.e. the interaction between the inclusion and the edge of the medium is negligible). In this paper, we aim to answer the question as to whether there exists an inclusion of certain configuration (with a uniform eigenstrain) that remains to possess a constant stress when embedded in a bounded medium whose edge interacts significantly with it. Specifically, we consider the anti-plane shear case of an inclusion with a uniform eigenstrain in a circular medium with a traction-free edge. We derive a sufficient and necessary condition ensuring the uniformity of the stress within the inclusion, which further leads to a nonlinear system of equations with respect to an infinite group of parameters characterizing the shape of the inclusion. We obtain convergent solutions for the truncated version of the nonlinear system using numerical techniques, and illustrate the corresponding shape of the inclusion in a few numerical examples. Our results for the case corresponding to small inclusion size and small edge-inclusion distance (relative to the radius of the medium) are well-consistent with the existing results for an inclusion with uniform stress in a semi-infinite medium with a traction-free surface, while those for centrally placed inclusions achieving uniform stress capture the classical case of centric circular inclusion accurately. The results presented in this paper provide a strong evidence for the existence of inclusions possessing uniform stress in an elastic bounded domain subjected to common external boundary conditions under anti-plane shear deformation.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"154 5","pages":"645 - 657"},"PeriodicalIF":1.8000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inclusions with Uniform Stress in a Bounded Elastic Domain\",\"authors\":\"Ming Dai\",\"doi\":\"10.1007/s10659-023-10025-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A single elliptical or ellipsoidal inclusion with an arbitrary uniform eigenstrain is known to achieve a constant stress field when embedded in an elastic medium provided the edge of the medium is sufficiently far from the inclusion (i.e. the interaction between the inclusion and the edge of the medium is negligible). In this paper, we aim to answer the question as to whether there exists an inclusion of certain configuration (with a uniform eigenstrain) that remains to possess a constant stress when embedded in a bounded medium whose edge interacts significantly with it. Specifically, we consider the anti-plane shear case of an inclusion with a uniform eigenstrain in a circular medium with a traction-free edge. We derive a sufficient and necessary condition ensuring the uniformity of the stress within the inclusion, which further leads to a nonlinear system of equations with respect to an infinite group of parameters characterizing the shape of the inclusion. We obtain convergent solutions for the truncated version of the nonlinear system using numerical techniques, and illustrate the corresponding shape of the inclusion in a few numerical examples. Our results for the case corresponding to small inclusion size and small edge-inclusion distance (relative to the radius of the medium) are well-consistent with the existing results for an inclusion with uniform stress in a semi-infinite medium with a traction-free surface, while those for centrally placed inclusions achieving uniform stress capture the classical case of centric circular inclusion accurately. The results presented in this paper provide a strong evidence for the existence of inclusions possessing uniform stress in an elastic bounded domain subjected to common external boundary conditions under anti-plane shear deformation.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":\"154 5\",\"pages\":\"645 - 657\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-023-10025-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-023-10025-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,具有任意均匀特征应变的单个椭圆形或椭圆形包容体嵌入弹性介质时,只要介质边缘离包容体足够远(即包容体与介质边缘之间的相互作用可忽略不计),就能获得恒定应力场。本文旨在回答这样一个问题:是否存在一种具有特定构型(具有均匀特征应变)的包含体,当它嵌入边缘与它有显著相互作用的有界介质中时,仍然具有恒定的应力。具体来说,我们考虑了在无牵引边缘的圆形介质中具有均匀特征应变的包含体的反平面剪切情况。我们推导出一个充分和必要条件,以确保包容体内部应力的均匀性,这进一步引出了一个与描述包容体形状的无限参数组有关的非线性方程组。我们利用数值技术获得了非线性系统截断版本的收敛解,并通过几个数值示例说明了包络的相应形状。我们对包涵体尺寸小和边缘-包涵体距离(相对于介质半径)小的情况得出的结果,与在具有无牵引表面的半无限介质中具有均匀应力的包涵体的现有结果非常一致,而对实现均匀应力的中心放置包涵体的结果,则准确地捕捉到了经典的中心圆形包涵体的情况。本文提出的结果有力地证明了在反平面剪切变形条件下,弹性有界域中具有均匀应力的夹杂物的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Inclusions with Uniform Stress in a Bounded Elastic Domain

Inclusions with Uniform Stress in a Bounded Elastic Domain

A single elliptical or ellipsoidal inclusion with an arbitrary uniform eigenstrain is known to achieve a constant stress field when embedded in an elastic medium provided the edge of the medium is sufficiently far from the inclusion (i.e. the interaction between the inclusion and the edge of the medium is negligible). In this paper, we aim to answer the question as to whether there exists an inclusion of certain configuration (with a uniform eigenstrain) that remains to possess a constant stress when embedded in a bounded medium whose edge interacts significantly with it. Specifically, we consider the anti-plane shear case of an inclusion with a uniform eigenstrain in a circular medium with a traction-free edge. We derive a sufficient and necessary condition ensuring the uniformity of the stress within the inclusion, which further leads to a nonlinear system of equations with respect to an infinite group of parameters characterizing the shape of the inclusion. We obtain convergent solutions for the truncated version of the nonlinear system using numerical techniques, and illustrate the corresponding shape of the inclusion in a few numerical examples. Our results for the case corresponding to small inclusion size and small edge-inclusion distance (relative to the radius of the medium) are well-consistent with the existing results for an inclusion with uniform stress in a semi-infinite medium with a traction-free surface, while those for centrally placed inclusions achieving uniform stress capture the classical case of centric circular inclusion accurately. The results presented in this paper provide a strong evidence for the existence of inclusions possessing uniform stress in an elastic bounded domain subjected to common external boundary conditions under anti-plane shear deformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信