H. Karamikabir, N. Karamikabir, M. Khajeian, M. Afshari
{"title":"反映正态损失下多元正态分布的Bayes小波Stein无偏风险估计","authors":"H. Karamikabir, N. Karamikabir, M. Khajeian, M. Afshari","doi":"10.1007/s11009-023-09992-3","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"25 1","pages":"1-20"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Wavelet Stein’s Unbiased Risk Estimation of Multivariate Normal Distribution Under Reflected Normal Loss\",\"authors\":\"H. Karamikabir, N. Karamikabir, M. Khajeian, M. Afshari\",\"doi\":\"10.1007/s11009-023-09992-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":\"25 1\",\"pages\":\"1-20\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-023-09992-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-023-09992-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
期刊介绍:
Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics.
The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests:
-Algorithms-
Approximations-
Asymptotic Approximations & Expansions-
Combinatorial & Geometric Probability-
Communication Networks-
Extreme Value Theory-
Finance-
Image Analysis-
Inequalities-
Information Theory-
Mathematical Physics-
Molecular Biology-
Monte Carlo Methods-
Order Statistics-
Queuing Theory-
Reliability Theory-
Stochastic Processes