基于物理信息的神经网络的非定常流平均流重建

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lukasz Sliwinski, Georgios Rigas
{"title":"基于物理信息的神经网络的非定常流平均流重建","authors":"Lukasz Sliwinski, Georgios Rigas","doi":"10.1017/dce.2022.37","DOIUrl":null,"url":null,"abstract":"Abstract Data assimilation of flow measurements is an essential tool for extracting information in fluid dynamics problems. Recent works have shown that the physics-informed neural networks (PINNs) enable the reconstruction of unsteady fluid flows, governed by the Navier–Stokes equations, if the network is given enough flow measurements that are appropriately distributed in time and space. In many practical applications, however, experimental measurements involve only time-averaged quantities or their higher order statistics which are governed by the under-determined Reynolds-averaged Navier–Stokes (RANS) equations. In this study, we perform PINN-based reconstruction of time-averaged quantities of an unsteady flow from sparse velocity data. The applied technique leverages the time-averaged velocity data to infer unknown closure quantities (curl of unsteady RANS forcing), as well as to interpolate the fields from sparse measurements. Furthermore, the method’s capabilities are extended further to the assimilation of Reynolds stresses where PINNs successfully interpolate the data to complete the velocity as well as the stresses fields and gain insight into the pressure field of the investigated flow.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mean flow reconstruction of unsteady flows using physics-informed neural networks\",\"authors\":\"Lukasz Sliwinski, Georgios Rigas\",\"doi\":\"10.1017/dce.2022.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Data assimilation of flow measurements is an essential tool for extracting information in fluid dynamics problems. Recent works have shown that the physics-informed neural networks (PINNs) enable the reconstruction of unsteady fluid flows, governed by the Navier–Stokes equations, if the network is given enough flow measurements that are appropriately distributed in time and space. In many practical applications, however, experimental measurements involve only time-averaged quantities or their higher order statistics which are governed by the under-determined Reynolds-averaged Navier–Stokes (RANS) equations. In this study, we perform PINN-based reconstruction of time-averaged quantities of an unsteady flow from sparse velocity data. The applied technique leverages the time-averaged velocity data to infer unknown closure quantities (curl of unsteady RANS forcing), as well as to interpolate the fields from sparse measurements. Furthermore, the method’s capabilities are extended further to the assimilation of Reynolds stresses where PINNs successfully interpolate the data to complete the velocity as well as the stresses fields and gain insight into the pressure field of the investigated flow.\",\"PeriodicalId\":34169,\"journal\":{\"name\":\"DataCentric Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DataCentric Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/dce.2022.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2022.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

流量测量数据同化是流体动力学问题中提取信息的重要工具。最近的研究表明,如果给定足够的流量测量值,并在时间和空间上适当分布,那么物理信息神经网络(pinn)能够重建由Navier-Stokes方程控制的非定常流体流动。然而,在许多实际应用中,实验测量只涉及时间平均量或它们的高阶统计量,这些量由欠定的reynolds -average Navier-Stokes (RANS)方程控制。在本研究中,我们利用稀疏速度数据对非定常流的时间平均量进行了基于ppin的重建。应用技术利用时间平均速度数据来推断未知的闭合量(非定常RANS强迫旋度),以及从稀疏测量中插值场。此外,该方法的功能进一步扩展到雷诺兹应力的同化,其中pinn成功地插值数据以完成速度和应力场,并深入了解所研究流动的压力场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean flow reconstruction of unsteady flows using physics-informed neural networks
Abstract Data assimilation of flow measurements is an essential tool for extracting information in fluid dynamics problems. Recent works have shown that the physics-informed neural networks (PINNs) enable the reconstruction of unsteady fluid flows, governed by the Navier–Stokes equations, if the network is given enough flow measurements that are appropriately distributed in time and space. In many practical applications, however, experimental measurements involve only time-averaged quantities or their higher order statistics which are governed by the under-determined Reynolds-averaged Navier–Stokes (RANS) equations. In this study, we perform PINN-based reconstruction of time-averaged quantities of an unsteady flow from sparse velocity data. The applied technique leverages the time-averaged velocity data to infer unknown closure quantities (curl of unsteady RANS forcing), as well as to interpolate the fields from sparse measurements. Furthermore, the method’s capabilities are extended further to the assimilation of Reynolds stresses where PINNs successfully interpolate the data to complete the velocity as well as the stresses fields and gain insight into the pressure field of the investigated flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信