关于Dirichlet级数在半平面上绝对收敛的极大项的性质的注记

Q3 Mathematics
M. Sheremeta
{"title":"关于Dirichlet级数在半平面上绝对收敛的极大项的性质的注记","authors":"M. Sheremeta","doi":"10.30970/ms.56.2.144-148","DOIUrl":null,"url":null,"abstract":"By $S_0(\\Lambda)$ denote a class of Dirichlet series $F(s)=\\sum_{n=0}^{\\infty}a_n\\exp\\{s\\lambda_n\\} (s=\\sigma+it)$ withan increasing to $+\\infty$ sequence $\\Lambda=(\\lambda_n)$ of exponents ($\\lambda_0=0$) and the abscissa of absolute convergence $\\sigma_a=0$.We say that $F\\in S_0^*(\\Lambda)$ if $F\\in S_0(\\Lambda)$ and $\\ln \\lambda_n=o(\\ln |a_n|)$ $(n\\to\\infty)$. Let$\\mu(\\sigma,F)=\\max\\{|a_n|\\exp{(\\sigma\\lambda_n)}\\colon n\\ge 0\\}$ be the maximal term of Dirichlet series. It is proved that in order that $\\ln (1/|\\sigma|)=o(\\ln \\mu(\\sigma))$ $(\\sigma\\uparrow 0)$ for every function $F\\in S_0^*(\\Lambda)$ it is necessary and sufficient that $\\displaystyle \\varlimsup\\limits_{n\\to\\infty}\\frac{\\ln \\lambda_{n+1}}{\\ln \\lambda_n}<+\\infty. $For an analytic in the disk $\\{z\\colon |z|<1\\}$ function $f(z)=\\sum_{n=0}^{\\infty}a_n z^n$ and $r\\in (0, 1)$ we put $M_f(r)=\\max\\{|f(z)|\\colon |z|=r<1\\}$ and $\\mu_f(r)=\\max\\{|a_n|r^n\\colon n\\ge 0\\}$. Then from hence we get the following statement: {\\sl if there exists a sequence $(n_j)$ such that $\\ln n_{j+1}=O(\\ln n_{j})$ and $\\ln n_{j}=o(\\ln |a_{n_{j}}|)$ as $j\\to\\infty$,  then the functions $\\ln \\mu_f(r)$ and $\\ln M_f(r)$ are or not are slowly increasing simultaneously.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note to the behavior of the maximal term of Dirichlet series absolutely convergent in half-plane\",\"authors\":\"M. Sheremeta\",\"doi\":\"10.30970/ms.56.2.144-148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By $S_0(\\\\Lambda)$ denote a class of Dirichlet series $F(s)=\\\\sum_{n=0}^{\\\\infty}a_n\\\\exp\\\\{s\\\\lambda_n\\\\} (s=\\\\sigma+it)$ withan increasing to $+\\\\infty$ sequence $\\\\Lambda=(\\\\lambda_n)$ of exponents ($\\\\lambda_0=0$) and the abscissa of absolute convergence $\\\\sigma_a=0$.We say that $F\\\\in S_0^*(\\\\Lambda)$ if $F\\\\in S_0(\\\\Lambda)$ and $\\\\ln \\\\lambda_n=o(\\\\ln |a_n|)$ $(n\\\\to\\\\infty)$. Let$\\\\mu(\\\\sigma,F)=\\\\max\\\\{|a_n|\\\\exp{(\\\\sigma\\\\lambda_n)}\\\\colon n\\\\ge 0\\\\}$ be the maximal term of Dirichlet series. It is proved that in order that $\\\\ln (1/|\\\\sigma|)=o(\\\\ln \\\\mu(\\\\sigma))$ $(\\\\sigma\\\\uparrow 0)$ for every function $F\\\\in S_0^*(\\\\Lambda)$ it is necessary and sufficient that $\\\\displaystyle \\\\varlimsup\\\\limits_{n\\\\to\\\\infty}\\\\frac{\\\\ln \\\\lambda_{n+1}}{\\\\ln \\\\lambda_n}<+\\\\infty. $For an analytic in the disk $\\\\{z\\\\colon |z|<1\\\\}$ function $f(z)=\\\\sum_{n=0}^{\\\\infty}a_n z^n$ and $r\\\\in (0, 1)$ we put $M_f(r)=\\\\max\\\\{|f(z)|\\\\colon |z|=r<1\\\\}$ and $\\\\mu_f(r)=\\\\max\\\\{|a_n|r^n\\\\colon n\\\\ge 0\\\\}$. Then from hence we get the following statement: {\\\\sl if there exists a sequence $(n_j)$ such that $\\\\ln n_{j+1}=O(\\\\ln n_{j})$ and $\\\\ln n_{j}=o(\\\\ln |a_{n_{j}}|)$ as $j\\\\to\\\\infty$,  then the functions $\\\\ln \\\\mu_f(r)$ and $\\\\ln M_f(r)$ are or not are slowly increasing simultaneously.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.56.2.144-148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.56.2.144-148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

通过$S_0(\Lambda)$表示一类狄利克雷级数$F(S)=\sum_{n=0}^{\infty}a_n\exp\{S\Lambda\}(S=\sigma+it)$,并增加到指数($\Lambda_0=0$)的$+\infty$序列$\Lambda=(\Lambda_n)$和绝对收敛的横坐标$\sigma_a=0$。\ln\Lambda_n=o(\ln|a_n|)$$(n\to\infty)$。设$\mu(\sigma,F)=\max\{|a_n|\exp{(\sigma_labda\n)}\colonn\ge0\}$为Dirichlet级数的最大项。证明了对于S_0^*(\Lambda)$中的每一个函数$F\,$\ln(1/|\sigma|)=o(\ln\mu(\sigma\uparrow0)$,$\displaystyle\varlimsup\limits_to\infty}\frac{\ln\Lambda_{n+1}}{\ln\Lambda_n}<+\infty是充要条件$对于磁盘$\{z\colon|z|<1\}$函数$f(z)=\sum_{n=0}^{\fty}a_n z^n$和$r\in(0,1)$中的分析,我们放入$M_f(r)=\max\{|f(z,|\colon|z |=r<1\}$和$\mu_f(r)=\max\。因此,我们得到以下语句:{\sl如果存在一个序列$(n_j)$,使得$\ln n_{j+1}=O(\ln n_{j})$和$\ln n_{j}=O(\ln|a_{n_{j}}|)$为$j\to\infty$,则函数$\ln \mu_f(r)$和$\ln M_f(r)美元是否同时缓慢增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note to the behavior of the maximal term of Dirichlet series absolutely convergent in half-plane
By $S_0(\Lambda)$ denote a class of Dirichlet series $F(s)=\sum_{n=0}^{\infty}a_n\exp\{s\lambda_n\} (s=\sigma+it)$ withan increasing to $+\infty$ sequence $\Lambda=(\lambda_n)$ of exponents ($\lambda_0=0$) and the abscissa of absolute convergence $\sigma_a=0$.We say that $F\in S_0^*(\Lambda)$ if $F\in S_0(\Lambda)$ and $\ln \lambda_n=o(\ln |a_n|)$ $(n\to\infty)$. Let$\mu(\sigma,F)=\max\{|a_n|\exp{(\sigma\lambda_n)}\colon n\ge 0\}$ be the maximal term of Dirichlet series. It is proved that in order that $\ln (1/|\sigma|)=o(\ln \mu(\sigma))$ $(\sigma\uparrow 0)$ for every function $F\in S_0^*(\Lambda)$ it is necessary and sufficient that $\displaystyle \varlimsup\limits_{n\to\infty}\frac{\ln \lambda_{n+1}}{\ln \lambda_n}<+\infty. $For an analytic in the disk $\{z\colon |z|<1\}$ function $f(z)=\sum_{n=0}^{\infty}a_n z^n$ and $r\in (0, 1)$ we put $M_f(r)=\max\{|f(z)|\colon |z|=r<1\}$ and $\mu_f(r)=\max\{|a_n|r^n\colon n\ge 0\}$. Then from hence we get the following statement: {\sl if there exists a sequence $(n_j)$ such that $\ln n_{j+1}=O(\ln n_{j})$ and $\ln n_{j}=o(\ln |a_{n_{j}}|)$ as $j\to\infty$,  then the functions $\ln \mu_f(r)$ and $\ln M_f(r)$ are or not are slowly increasing simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信