线束的强度

IF 0.3 4区 数学 Q4 MATHEMATICS
E. Ballico, Emanuele Ventura
{"title":"线束的强度","authors":"E. Ballico, Emanuele Ventura","doi":"10.7146/math.scand.a-128529","DOIUrl":null,"url":null,"abstract":"We introduce the strength for sections of a line bundle on an algebraic variety. This generalizes the strength of homogeneous polynomials that has been recently introduced to resolve Stillman's conjecture, an important problem in commutative algebra. We establish the first properties of this notion and give some tool to obtain upper bounds on the strength in this framework. Moreover, we show some results on the usual strength such as the reducibility of the set of strength two homogeneous polynomials.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The strength for line bundles\",\"authors\":\"E. Ballico, Emanuele Ventura\",\"doi\":\"10.7146/math.scand.a-128529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the strength for sections of a line bundle on an algebraic variety. This generalizes the strength of homogeneous polynomials that has been recently introduced to resolve Stillman's conjecture, an important problem in commutative algebra. We establish the first properties of this notion and give some tool to obtain upper bounds on the strength in this framework. Moreover, we show some results on the usual strength such as the reducibility of the set of strength two homogeneous polynomials.\",\"PeriodicalId\":49873,\"journal\":{\"name\":\"Mathematica Scandinavica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Scandinavica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-128529\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-128529","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们在一个代数变量上引入线束截面的强度。这概括了齐次多项式的强度,齐次多项式最近被引入来解决Stillman猜想,这是交换代数中的一个重要问题。我们建立了这个概念的第一个性质,并给出了在这个框架下求强度上界的一些工具。此外,我们还给出了一些关于通常强度的结果,如强度两个齐次多项式集合的可约性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The strength for line bundles
We introduce the strength for sections of a line bundle on an algebraic variety. This generalizes the strength of homogeneous polynomials that has been recently introduced to resolve Stillman's conjecture, an important problem in commutative algebra. We establish the first properties of this notion and give some tool to obtain upper bounds on the strength in this framework. Moreover, we show some results on the usual strength such as the reducibility of the set of strength two homogeneous polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信