识别蒙特利尔(加拿大)长期混合降水的深度学习方法

IF 1.6 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
M. Mittermeier, É. Bresson, D. Paquin, R. Ludwig
{"title":"识别蒙特利尔(加拿大)长期混合降水的深度学习方法","authors":"M. Mittermeier, É. Bresson, D. Paquin, R. Ludwig","doi":"10.1080/07055900.2021.1992341","DOIUrl":null,"url":null,"abstract":"ABSTRACT Long-duration mixed-precipitation events (freezing rain and/or ice pellets) are important cold-season hazards and understanding how climate change alters their occurrence is of high societal interest, particularly in urban areas. This study introduces a two-staged approach that employs deep learning to identify long-duration mixed precipitation over the Montréal area (Quebec, Canada) in archived climate model data using large-scale pressure patterns. The dominant dynamic mechanism leading to mixed precipitation in Montréal is pressure-driven channelling of winds along the St. Lawrence River Valley. A convolutional neural network (CNN) identifies the corresponding synoptic pattern by using a large training database derived from an ensemble of the Canadian Regional Climate Model, version 5 (CRCM5). The CRCM5 uses the diagnostic method of Bourgouin (2000) to simulate mixed precipitation and delivers training examples and corresponding class affiliations (labels) for this supervised classification task. The CNN correctly identifies more than 80% of the Bourgouin mixed-precipitation cases. In the next stage, the CNN is combined with temperature and precipitation conditions, which consider important preconditions for mixed precipitation and improve the performance of the approach. The evaluation of a CRCM5 run driven by ERA-Interim reanalysis data gives a Matthews correlation coefficient of 0.50. The deep learning approach can be applied to ensembles of regional climate models on the North American grid of the Coordinated Regional Downscaling Experiment (CORDEX-NA).","PeriodicalId":55434,"journal":{"name":"Atmosphere-Ocean","volume":"60 1","pages":"554 - 565"},"PeriodicalIF":1.6000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Deep Learning Approach for the Identification of Long-Duration Mixed Precipitation in Montréal (Canada)\",\"authors\":\"M. Mittermeier, É. Bresson, D. Paquin, R. Ludwig\",\"doi\":\"10.1080/07055900.2021.1992341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Long-duration mixed-precipitation events (freezing rain and/or ice pellets) are important cold-season hazards and understanding how climate change alters their occurrence is of high societal interest, particularly in urban areas. This study introduces a two-staged approach that employs deep learning to identify long-duration mixed precipitation over the Montréal area (Quebec, Canada) in archived climate model data using large-scale pressure patterns. The dominant dynamic mechanism leading to mixed precipitation in Montréal is pressure-driven channelling of winds along the St. Lawrence River Valley. A convolutional neural network (CNN) identifies the corresponding synoptic pattern by using a large training database derived from an ensemble of the Canadian Regional Climate Model, version 5 (CRCM5). The CRCM5 uses the diagnostic method of Bourgouin (2000) to simulate mixed precipitation and delivers training examples and corresponding class affiliations (labels) for this supervised classification task. The CNN correctly identifies more than 80% of the Bourgouin mixed-precipitation cases. In the next stage, the CNN is combined with temperature and precipitation conditions, which consider important preconditions for mixed precipitation and improve the performance of the approach. The evaluation of a CRCM5 run driven by ERA-Interim reanalysis data gives a Matthews correlation coefficient of 0.50. The deep learning approach can be applied to ensembles of regional climate models on the North American grid of the Coordinated Regional Downscaling Experiment (CORDEX-NA).\",\"PeriodicalId\":55434,\"journal\":{\"name\":\"Atmosphere-Ocean\",\"volume\":\"60 1\",\"pages\":\"554 - 565\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere-Ocean\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/07055900.2021.1992341\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere-Ocean","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/07055900.2021.1992341","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

长时间混合降水事件(冻雨和/或冰球)是重要的冷季危害,了解气候变化如何改变其发生具有高度的社会意义,特别是在城市地区。本研究介绍了一种采用深度学习的两阶段方法,利用大尺度压力模式在存档的气候模型数据中识别montracimal地区(加拿大魁北克省)的长时间混合降水。导致montracimal混合降水的主要动力机制是沿着圣劳伦斯河谷的风的压力驱动通道。卷积神经网络(CNN)通过使用来自加拿大区域气候模式第5版(CRCM5)集合的大型训练数据库来识别相应的天气模式。CRCM5使用Bourgouin(2000)的诊断方法模拟混合降水,并为该监督分类任务提供训练样例和相应的类隶属关系(标签)。CNN正确识别了超过80%的布尔古因混合降水案例。下一阶段,将CNN与温度和降水条件结合,考虑了混合降水的重要前提条件,提高了方法的性能。由ERA-Interim再分析数据驱动的CRCM5运行评估的马修斯相关系数为0.50。深度学习方法可以应用于协调区域降尺度实验(CORDEX-NA)北美网格上的区域气候模式集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Approach for the Identification of Long-Duration Mixed Precipitation in Montréal (Canada)
ABSTRACT Long-duration mixed-precipitation events (freezing rain and/or ice pellets) are important cold-season hazards and understanding how climate change alters their occurrence is of high societal interest, particularly in urban areas. This study introduces a two-staged approach that employs deep learning to identify long-duration mixed precipitation over the Montréal area (Quebec, Canada) in archived climate model data using large-scale pressure patterns. The dominant dynamic mechanism leading to mixed precipitation in Montréal is pressure-driven channelling of winds along the St. Lawrence River Valley. A convolutional neural network (CNN) identifies the corresponding synoptic pattern by using a large training database derived from an ensemble of the Canadian Regional Climate Model, version 5 (CRCM5). The CRCM5 uses the diagnostic method of Bourgouin (2000) to simulate mixed precipitation and delivers training examples and corresponding class affiliations (labels) for this supervised classification task. The CNN correctly identifies more than 80% of the Bourgouin mixed-precipitation cases. In the next stage, the CNN is combined with temperature and precipitation conditions, which consider important preconditions for mixed precipitation and improve the performance of the approach. The evaluation of a CRCM5 run driven by ERA-Interim reanalysis data gives a Matthews correlation coefficient of 0.50. The deep learning approach can be applied to ensembles of regional climate models on the North American grid of the Coordinated Regional Downscaling Experiment (CORDEX-NA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere-Ocean
Atmosphere-Ocean 地学-海洋学
CiteScore
2.50
自引率
16.70%
发文量
33
审稿时长
>12 weeks
期刊介绍: Atmosphere-Ocean is the principal scientific journal of the Canadian Meteorological and Oceanographic Society (CMOS). It contains results of original research, survey articles, notes and comments on published papers in all fields of the atmospheric, oceanographic and hydrological sciences. Arctic, coastal and mid- to high-latitude regions are areas of particular interest. Applied or fundamental research contributions in English or French on the following topics are welcomed: climate and climatology; observation technology, remote sensing; forecasting, modelling, numerical methods; physics, dynamics, chemistry, biogeochemistry; boundary layers, pollution, aerosols; circulation, cloud physics, hydrology, air-sea interactions; waves, ice, energy exchange and related environmental topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信