Chuanbei Tian, Guangyun Li, Mian Wang, Hanqiu Chen, Yishu Ding, Gang Chen, YA-YING Li, Yuzhen Nima, Huai Liu
{"title":"MAPK信号通路基因的激活导致高温适应性barkeri新绥螨的耐热性增强(Hughes)","authors":"Chuanbei Tian, Guangyun Li, Mian Wang, Hanqiu Chen, Yishu Ding, Gang Chen, YA-YING Li, Yuzhen Nima, Huai Liu","doi":"10.11158/saa.28.5.10","DOIUrl":null,"url":null,"abstract":"Abstract Predatory mites are important biological control agents for phytophagous mites and several small insect pests on vegetables, while the control efficiency is often limited by the changeable or fluctuating environment, especially under the threat of global warming. To mitigate the undesired impacts of high temperature environment, a high-temperature adapted strain (HTAS) of the predatory mite Neoseiulus barkeri (Hughes) was screened from a conventional strain (CS) by long-term heat acclimation (35°C) and regular heat hardenings (45°C). In this study, to investigate the molecular mechanisms of enhanced thermotolerance in HTAS N. barkeri, four mitogen-activated protein kinase (MAPK) pathway genes were identified from the predatory mite N. barkeri. The expression levels at different developmental stages showed four MAPK pathway genes were highest at adults and lowest at eggs or nymphs in both strains. Under 42°C high temperature stress, the expression levels of four identified MAPK pathway genes increased rapidly at a short time in both N. barkeri strains and the magnitude of expression increase in HTAS N. barkeri was even more evident. In addition, the MAPK pathway genes expression in CS N. barkeri sharply decreased following longer exposure periods at 4 h, whereas the expression in HTAS N. barkeri remained elevated after 4 h. These results suggested that MAPK signaling pathway participated in the formation of thermotolerance in predatory phytoseiid mites, which provided new insights in promoting the biological control efficiency of predatory mites under changeable environment.","PeriodicalId":51306,"journal":{"name":"Systematic and Applied Acarology","volume":"28 1","pages":"888 - 902"},"PeriodicalIF":1.3000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of MAPK signaling pathway genes leads to promoted thermotolerance in a high-temperature adapted predatory mite Neoseiulus barkeri (Hughes)\",\"authors\":\"Chuanbei Tian, Guangyun Li, Mian Wang, Hanqiu Chen, Yishu Ding, Gang Chen, YA-YING Li, Yuzhen Nima, Huai Liu\",\"doi\":\"10.11158/saa.28.5.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Predatory mites are important biological control agents for phytophagous mites and several small insect pests on vegetables, while the control efficiency is often limited by the changeable or fluctuating environment, especially under the threat of global warming. To mitigate the undesired impacts of high temperature environment, a high-temperature adapted strain (HTAS) of the predatory mite Neoseiulus barkeri (Hughes) was screened from a conventional strain (CS) by long-term heat acclimation (35°C) and regular heat hardenings (45°C). In this study, to investigate the molecular mechanisms of enhanced thermotolerance in HTAS N. barkeri, four mitogen-activated protein kinase (MAPK) pathway genes were identified from the predatory mite N. barkeri. The expression levels at different developmental stages showed four MAPK pathway genes were highest at adults and lowest at eggs or nymphs in both strains. Under 42°C high temperature stress, the expression levels of four identified MAPK pathway genes increased rapidly at a short time in both N. barkeri strains and the magnitude of expression increase in HTAS N. barkeri was even more evident. In addition, the MAPK pathway genes expression in CS N. barkeri sharply decreased following longer exposure periods at 4 h, whereas the expression in HTAS N. barkeri remained elevated after 4 h. These results suggested that MAPK signaling pathway participated in the formation of thermotolerance in predatory phytoseiid mites, which provided new insights in promoting the biological control efficiency of predatory mites under changeable environment.\",\"PeriodicalId\":51306,\"journal\":{\"name\":\"Systematic and Applied Acarology\",\"volume\":\"28 1\",\"pages\":\"888 - 902\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic and Applied Acarology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.11158/saa.28.5.10\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic and Applied Acarology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.11158/saa.28.5.10","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Activation of MAPK signaling pathway genes leads to promoted thermotolerance in a high-temperature adapted predatory mite Neoseiulus barkeri (Hughes)
Abstract Predatory mites are important biological control agents for phytophagous mites and several small insect pests on vegetables, while the control efficiency is often limited by the changeable or fluctuating environment, especially under the threat of global warming. To mitigate the undesired impacts of high temperature environment, a high-temperature adapted strain (HTAS) of the predatory mite Neoseiulus barkeri (Hughes) was screened from a conventional strain (CS) by long-term heat acclimation (35°C) and regular heat hardenings (45°C). In this study, to investigate the molecular mechanisms of enhanced thermotolerance in HTAS N. barkeri, four mitogen-activated protein kinase (MAPK) pathway genes were identified from the predatory mite N. barkeri. The expression levels at different developmental stages showed four MAPK pathway genes were highest at adults and lowest at eggs or nymphs in both strains. Under 42°C high temperature stress, the expression levels of four identified MAPK pathway genes increased rapidly at a short time in both N. barkeri strains and the magnitude of expression increase in HTAS N. barkeri was even more evident. In addition, the MAPK pathway genes expression in CS N. barkeri sharply decreased following longer exposure periods at 4 h, whereas the expression in HTAS N. barkeri remained elevated after 4 h. These results suggested that MAPK signaling pathway participated in the formation of thermotolerance in predatory phytoseiid mites, which provided new insights in promoting the biological control efficiency of predatory mites under changeable environment.
期刊介绍:
Systematic and Applied Acarology (SAA) is an international journal of the Systematic and Applied Acarology Society (SAAS). The journal is intended as a publication outlet for all acarologists in the world.
There is no page charge for publishing in SAA. If the authors have funds to publish, they can pay US$20 per page to enable their papers published for open access.
SAA publishes papers reporting results of original research on any aspects of mites and ticks. Due to the recent increase in submissions, SAA editors will be more selective in manuscript evaluation: (1) encouraging more high quality non-taxonomic papers to address the balance between taxonomic and non-taxonomic papers, and (2) discouraging single species description (see new special issues for single new species description) while giving priority to high quality systematic papers on comparative treatments and revisions of multiple taxa. In addition to review papers and research articles (over 4 printed pages), we welcome short correspondence (up to 4 printed pages) for condensed version of short papers, comments on other papers, data papers (with one table or figure) and short reviews or opinion pieces. The correspondence format will save space by omitting the abstract, key words, and major headings such as Introduction.