Diego Bareiro, Enrique O’Durnin, Laura Oporto, C. Schaerer
{"title":"伊帕喀莱湖污染物分布的浅水模型","authors":"Diego Bareiro, Enrique O’Durnin, Laura Oporto, C. Schaerer","doi":"10.32480/rscp.2021.26.2.54","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the distribution of a non-reactive contaminant in Ypacarai Lake. We propose a shallow-water model that considers wind-induced currents, inflow and outflow conditions in the tributaries, and bottom effects due to the lakebed. The hydrodynamic is based on the depth-averaged Navier-Stokes equations considering wind stresses as force terms which are functions of the wind velocity. Bed (bottom) stress is based on Manning's equation, the lakebed characteristics, and wind velocities. The contaminant transportation is modeled by a 2D convection-diffusion equation taking into consideration water level. Comparisons between the simulation of the model, analytical solutions, and laboratory results confirm that the model captures the complex dynamic phenomenology of the lake. In the simulations, one can see the regions with the highest risk of accumulation of contaminants. It is observed the effect of each term and how it can be used them to mitigate the impact of the pollutants. ","PeriodicalId":33213,"journal":{"name":"Revista de la Sociedad Cientifica del Paraguay","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shallow water model for pollutant distribution in the Ypacarai Lake\",\"authors\":\"Diego Bareiro, Enrique O’Durnin, Laura Oporto, C. Schaerer\",\"doi\":\"10.32480/rscp.2021.26.2.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the distribution of a non-reactive contaminant in Ypacarai Lake. We propose a shallow-water model that considers wind-induced currents, inflow and outflow conditions in the tributaries, and bottom effects due to the lakebed. The hydrodynamic is based on the depth-averaged Navier-Stokes equations considering wind stresses as force terms which are functions of the wind velocity. Bed (bottom) stress is based on Manning's equation, the lakebed characteristics, and wind velocities. The contaminant transportation is modeled by a 2D convection-diffusion equation taking into consideration water level. Comparisons between the simulation of the model, analytical solutions, and laboratory results confirm that the model captures the complex dynamic phenomenology of the lake. In the simulations, one can see the regions with the highest risk of accumulation of contaminants. It is observed the effect of each term and how it can be used them to mitigate the impact of the pollutants. \",\"PeriodicalId\":33213,\"journal\":{\"name\":\"Revista de la Sociedad Cientifica del Paraguay\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de la Sociedad Cientifica del Paraguay\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32480/rscp.2021.26.2.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Sociedad Cientifica del Paraguay","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32480/rscp.2021.26.2.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shallow water model for pollutant distribution in the Ypacarai Lake
In this paper, we analyze the distribution of a non-reactive contaminant in Ypacarai Lake. We propose a shallow-water model that considers wind-induced currents, inflow and outflow conditions in the tributaries, and bottom effects due to the lakebed. The hydrodynamic is based on the depth-averaged Navier-Stokes equations considering wind stresses as force terms which are functions of the wind velocity. Bed (bottom) stress is based on Manning's equation, the lakebed characteristics, and wind velocities. The contaminant transportation is modeled by a 2D convection-diffusion equation taking into consideration water level. Comparisons between the simulation of the model, analytical solutions, and laboratory results confirm that the model captures the complex dynamic phenomenology of the lake. In the simulations, one can see the regions with the highest risk of accumulation of contaminants. It is observed the effect of each term and how it can be used them to mitigate the impact of the pollutants.