{"title":"关于一般向量值模形式的计算","authors":"Tobias Magnusson, Martin Raum","doi":"10.1090/mcom/3847","DOIUrl":null,"url":null,"abstract":"We present and discuss an algorithm and its implementation that is capable of directly determining Fourier expansions of any vector-valued modular form of weight at least \n\n \n 2\n 2\n \n\n associated with representations whose kernel is a congruence subgroup. It complements two available algorithms that are limited to inductions of Dirichlet characters and to Weil representations, thus covering further applications like Moonshine or Jacobi forms for congruence subgroups. We examine the calculation of invariants in specific representations via techniques from permutation groups, which greatly aids runtime performance. We explain how a generalization of cusp expansions of classical modular forms enters our implementation. After a heuristic consideration of time complexity, we relate the formulation of our algorithm to the two available ones, to highlight the compromises between level of generality and performance that each them makes.","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the computation of general vector-valued modular forms\",\"authors\":\"Tobias Magnusson, Martin Raum\",\"doi\":\"10.1090/mcom/3847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present and discuss an algorithm and its implementation that is capable of directly determining Fourier expansions of any vector-valued modular form of weight at least \\n\\n \\n 2\\n 2\\n \\n\\n associated with representations whose kernel is a congruence subgroup. It complements two available algorithms that are limited to inductions of Dirichlet characters and to Weil representations, thus covering further applications like Moonshine or Jacobi forms for congruence subgroups. We examine the calculation of invariants in specific representations via techniques from permutation groups, which greatly aids runtime performance. We explain how a generalization of cusp expansions of classical modular forms enters our implementation. After a heuristic consideration of time complexity, we relate the formulation of our algorithm to the two available ones, to highlight the compromises between level of generality and performance that each them makes.\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3847\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3847","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the computation of general vector-valued modular forms
We present and discuss an algorithm and its implementation that is capable of directly determining Fourier expansions of any vector-valued modular form of weight at least
2
2
associated with representations whose kernel is a congruence subgroup. It complements two available algorithms that are limited to inductions of Dirichlet characters and to Weil representations, thus covering further applications like Moonshine or Jacobi forms for congruence subgroups. We examine the calculation of invariants in specific representations via techniques from permutation groups, which greatly aids runtime performance. We explain how a generalization of cusp expansions of classical modular forms enters our implementation. After a heuristic consideration of time complexity, we relate the formulation of our algorithm to the two available ones, to highlight the compromises between level of generality and performance that each them makes.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.