{"title":"稀疏氡变换与动态波形匹配增强叠前地震数据","authors":"Fangzheng Ma, Chengliang Wu, Sheng Shen","doi":"10.1093/jge/gxad050","DOIUrl":null,"url":null,"abstract":"\n In the field of complex underground geological structures and irregular topography, prestack seismic data often have a low Signal-to-Noise Ratio (SNR), where weakly reflected signals are buried beneath strong incoherent, and scattered noise. Stacking, such as beamforming along the moveout surfaces of coherent local events, can significantly improve seismic data quality. Accurate and efficient estimation of the moveout for an irregular acquisition geometry and uneven illumination is important in a complex environment. In this paper, a new optimal stacking approach for enhancing weak prestack reflection signals is presented. The proposed method mainly includes regional division and moveout estimation. Optimal stacking should be implemented within local time and space domains. Based on beam ray theory, we designed a reasonable regional division of the Common-Shot (CS), Common-Receiver (CR), and Common-Middle-Point (CMP) domains. Then, we proposed using the sparse radon transform and dynamic waveform matching method to estimate the moveout surfaces of local reflection events. The sparse radon transform was applied to obtain the linear moveout to ensure the correctness of the reflection wave direction. The residual nonlinear disturbance was estimated using the dynamic waveform matching method. Tests on synthetic and field data demonstrated the effectiveness of the proposed method, which can effectively improve the SNR of prestack seismic data and attenuate incoherent noise.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing prestack seismic data by sparse radon transform and dynamic waveform matching\",\"authors\":\"Fangzheng Ma, Chengliang Wu, Sheng Shen\",\"doi\":\"10.1093/jge/gxad050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the field of complex underground geological structures and irregular topography, prestack seismic data often have a low Signal-to-Noise Ratio (SNR), where weakly reflected signals are buried beneath strong incoherent, and scattered noise. Stacking, such as beamforming along the moveout surfaces of coherent local events, can significantly improve seismic data quality. Accurate and efficient estimation of the moveout for an irregular acquisition geometry and uneven illumination is important in a complex environment. In this paper, a new optimal stacking approach for enhancing weak prestack reflection signals is presented. The proposed method mainly includes regional division and moveout estimation. Optimal stacking should be implemented within local time and space domains. Based on beam ray theory, we designed a reasonable regional division of the Common-Shot (CS), Common-Receiver (CR), and Common-Middle-Point (CMP) domains. Then, we proposed using the sparse radon transform and dynamic waveform matching method to estimate the moveout surfaces of local reflection events. The sparse radon transform was applied to obtain the linear moveout to ensure the correctness of the reflection wave direction. The residual nonlinear disturbance was estimated using the dynamic waveform matching method. Tests on synthetic and field data demonstrated the effectiveness of the proposed method, which can effectively improve the SNR of prestack seismic data and attenuate incoherent noise.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxad050\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad050","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Enhancing prestack seismic data by sparse radon transform and dynamic waveform matching
In the field of complex underground geological structures and irregular topography, prestack seismic data often have a low Signal-to-Noise Ratio (SNR), where weakly reflected signals are buried beneath strong incoherent, and scattered noise. Stacking, such as beamforming along the moveout surfaces of coherent local events, can significantly improve seismic data quality. Accurate and efficient estimation of the moveout for an irregular acquisition geometry and uneven illumination is important in a complex environment. In this paper, a new optimal stacking approach for enhancing weak prestack reflection signals is presented. The proposed method mainly includes regional division and moveout estimation. Optimal stacking should be implemented within local time and space domains. Based on beam ray theory, we designed a reasonable regional division of the Common-Shot (CS), Common-Receiver (CR), and Common-Middle-Point (CMP) domains. Then, we proposed using the sparse radon transform and dynamic waveform matching method to estimate the moveout surfaces of local reflection events. The sparse radon transform was applied to obtain the linear moveout to ensure the correctness of the reflection wave direction. The residual nonlinear disturbance was estimated using the dynamic waveform matching method. Tests on synthetic and field data demonstrated the effectiveness of the proposed method, which can effectively improve the SNR of prestack seismic data and attenuate incoherent noise.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.