可变形饱和多孔介质中流体流动和溶质输运的分式方法

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
V. Salomoni, N. De Marchi
{"title":"可变形饱和多孔介质中流体流动和溶质输运的分式方法","authors":"V. Salomoni, N. De Marchi","doi":"10.1142/s2047684122500038","DOIUrl":null,"url":null,"abstract":"The non-Darcian flow and solute transport in geometrically nonlinear porous media are modeled with Riesz derivative solved via Simpson’s rule or treated through the Grünwald–Letnikow definition and subsequently discretized via Finite Difference schemes when considering anomalous diffusion, nonlinear diffusion, or anomalous solute advection–dispersion, respectively. Particularly, the standard diffusion and advection–dispersion equations are converted into fractional equations to take into account memory effects as well as non-Fickian dispersion processes. Hence, a 3D hydro-mechanical model accounting for geometric nonlinearities is correspondingly developed including the fractional diffusion–advection–dispersion equations (FRADEs) and a series of one-dimensional analyses are performed with validation purposes.","PeriodicalId":45186,"journal":{"name":"International Journal of Computational Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A fractional approach to fluid flow and solute transport within deformable saturated porous media\",\"authors\":\"V. Salomoni, N. De Marchi\",\"doi\":\"10.1142/s2047684122500038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The non-Darcian flow and solute transport in geometrically nonlinear porous media are modeled with Riesz derivative solved via Simpson’s rule or treated through the Grünwald–Letnikow definition and subsequently discretized via Finite Difference schemes when considering anomalous diffusion, nonlinear diffusion, or anomalous solute advection–dispersion, respectively. Particularly, the standard diffusion and advection–dispersion equations are converted into fractional equations to take into account memory effects as well as non-Fickian dispersion processes. Hence, a 3D hydro-mechanical model accounting for geometric nonlinearities is correspondingly developed including the fractional diffusion–advection–dispersion equations (FRADEs) and a series of one-dimensional analyses are performed with validation purposes.\",\"PeriodicalId\":45186,\"journal\":{\"name\":\"International Journal of Computational Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2047684122500038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2047684122500038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

几何非线性多孔介质中的非达西流动和溶质输移分别用Riesz导数通过Simpson规则求解或gr nwald - letnikow定义进行建模,然后分别考虑异常扩散、非线性扩散或异常溶质平流-弥散,通过有限差分格式进行离散化。特别地,标准扩散和平流色散方程被转换成分数阶方程,以考虑记忆效应和非菲克色散过程。因此,相应地建立了考虑几何非线性的三维水力学模型,包括分数扩散-平流-弥散方程(FRADEs),并进行了一系列一维分析以验证其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fractional approach to fluid flow and solute transport within deformable saturated porous media
The non-Darcian flow and solute transport in geometrically nonlinear porous media are modeled with Riesz derivative solved via Simpson’s rule or treated through the Grünwald–Letnikow definition and subsequently discretized via Finite Difference schemes when considering anomalous diffusion, nonlinear diffusion, or anomalous solute advection–dispersion, respectively. Particularly, the standard diffusion and advection–dispersion equations are converted into fractional equations to take into account memory effects as well as non-Fickian dispersion processes. Hence, a 3D hydro-mechanical model accounting for geometric nonlinearities is correspondingly developed including the fractional diffusion–advection–dispersion equations (FRADEs) and a series of one-dimensional analyses are performed with validation purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
15.40%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信