静肩搅拌摩擦焊提高Al-Ti异种接头的组织、组织和力学性能

IF 2.4 3区 工程技术 Q3 ENGINEERING, MANUFACTURING
Saravana Sundar A, Krishna Kishore Mugada, Adepu Kumar
{"title":"静肩搅拌摩擦焊提高Al-Ti异种接头的组织、组织和力学性能","authors":"Saravana Sundar A, Krishna Kishore Mugada, Adepu Kumar","doi":"10.1115/1.4063358","DOIUrl":null,"url":null,"abstract":"\n The present study explores the application of static shoulder friction stir welding (SSFSW) to address the challenges of poor mechanical properties in conventional Al-Ti dissimilar friction stir joints, which arise due to significant material mixing and the formation of thick intermetallic layers. The results show that SSFSW inhibited material mixing and the mutual diffusion of Al and Ti were suppressed due to lower heat input. Mutual interdiffusion of Al and Ti was directed by an exothermic chemical reaction, forming an Al5Ti2 – Al3Ti sequence due to sluggish diffusion of Al in Ti at a temperature of 512°C achieved in this study. The microstructure at stir zone (SZ) comprised equiaxed grains with Ti particles acting as dispersoids for nucleation, whereas the presence of large Ti blocks at SZ of Conventional FSW (CFSW) resisted plastic deformation, resulting in non-homogeneous concentration of dislocations near its interface. A significant decrease in grain size at all the critical zones of weldment was due to rearrangement of dislocations through slip-and-climb mechanism, as evidenced by the occurrence of dynamic recrystallization. Emergence of γ-fiber and basal fiber texture increased the tensile strength of SSFSW to 289 MPa, which is about 11.2% higher than CFSW, with joint efficiency of about 88%. The study also analysed the contribution of various strengthening mechanisms to the yield strength improvement of SSFSW weldments in detail of SSFSW weldments in detail, and the results showed that grain boundary strengthening contributed the most to strength improvement in SSFSW.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Microstructural, Textural, and Mechanical Properties of Al-Ti Dissimilar Joints via Static Shoulder Friction Stir Welding\",\"authors\":\"Saravana Sundar A, Krishna Kishore Mugada, Adepu Kumar\",\"doi\":\"10.1115/1.4063358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The present study explores the application of static shoulder friction stir welding (SSFSW) to address the challenges of poor mechanical properties in conventional Al-Ti dissimilar friction stir joints, which arise due to significant material mixing and the formation of thick intermetallic layers. The results show that SSFSW inhibited material mixing and the mutual diffusion of Al and Ti were suppressed due to lower heat input. Mutual interdiffusion of Al and Ti was directed by an exothermic chemical reaction, forming an Al5Ti2 – Al3Ti sequence due to sluggish diffusion of Al in Ti at a temperature of 512°C achieved in this study. The microstructure at stir zone (SZ) comprised equiaxed grains with Ti particles acting as dispersoids for nucleation, whereas the presence of large Ti blocks at SZ of Conventional FSW (CFSW) resisted plastic deformation, resulting in non-homogeneous concentration of dislocations near its interface. A significant decrease in grain size at all the critical zones of weldment was due to rearrangement of dislocations through slip-and-climb mechanism, as evidenced by the occurrence of dynamic recrystallization. Emergence of γ-fiber and basal fiber texture increased the tensile strength of SSFSW to 289 MPa, which is about 11.2% higher than CFSW, with joint efficiency of about 88%. The study also analysed the contribution of various strengthening mechanisms to the yield strength improvement of SSFSW weldments in detail of SSFSW weldments in detail, and the results showed that grain boundary strengthening contributed the most to strength improvement in SSFSW.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063358\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063358","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了静态肩部搅拌摩擦焊(SSFSW)的应用,以解决传统Al-Ti异种搅拌摩擦接头机械性能差的挑战,这些挑战是由于大量的材料混合和厚金属间层的形成而引起的。结果表明,SSFSW抑制了材料的混合,并且由于较低的热输入而抑制了Al和Ti的相互扩散。Al和Ti的相互扩散是由放热化学反应引导的,由于在512°C的温度下Al在Ti中缓慢扩散,形成了Al5Ti2–Al3Ti序列。搅拌区(SZ)的微观结构由等轴晶粒组成,Ti颗粒作为成核的分散体,而传统FSW(CFSW)的SZ处存在的大Ti块体阻止了塑性变形,导致界面附近位错的不均匀集中。焊件所有临界区的晶粒尺寸显著减小是由于位错通过滑移和爬升机制重新排列,动态再结晶的发生证明了这一点。γ纤维和基底纤维织构的出现使SSFSW的抗拉强度提高到289MPa,比CFSW高11.2%,接头效率约为88%。研究还详细分析了各种强化机制对SSFSW焊件屈服强度提高的贡献——详细分析了SSFSW焊接件的屈服强度提高,结果表明,晶界强化对提高SSFSW强度的贡献最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Microstructural, Textural, and Mechanical Properties of Al-Ti Dissimilar Joints via Static Shoulder Friction Stir Welding
The present study explores the application of static shoulder friction stir welding (SSFSW) to address the challenges of poor mechanical properties in conventional Al-Ti dissimilar friction stir joints, which arise due to significant material mixing and the formation of thick intermetallic layers. The results show that SSFSW inhibited material mixing and the mutual diffusion of Al and Ti were suppressed due to lower heat input. Mutual interdiffusion of Al and Ti was directed by an exothermic chemical reaction, forming an Al5Ti2 – Al3Ti sequence due to sluggish diffusion of Al in Ti at a temperature of 512°C achieved in this study. The microstructure at stir zone (SZ) comprised equiaxed grains with Ti particles acting as dispersoids for nucleation, whereas the presence of large Ti blocks at SZ of Conventional FSW (CFSW) resisted plastic deformation, resulting in non-homogeneous concentration of dislocations near its interface. A significant decrease in grain size at all the critical zones of weldment was due to rearrangement of dislocations through slip-and-climb mechanism, as evidenced by the occurrence of dynamic recrystallization. Emergence of γ-fiber and basal fiber texture increased the tensile strength of SSFSW to 289 MPa, which is about 11.2% higher than CFSW, with joint efficiency of about 88%. The study also analysed the contribution of various strengthening mechanisms to the yield strength improvement of SSFSW weldments in detail of SSFSW weldments in detail, and the results showed that grain boundary strengthening contributed the most to strength improvement in SSFSW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
20.00%
发文量
126
审稿时长
12 months
期刊介绍: Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信