{"title":"用描述长周期堆积有序相的一般模型对Mg-Ni-Gd体系进行热力学评价","authors":"Chenguang Yang, Jiadong Wang, Liqin Wu, Qiuyu Zeng, Liwei Zhang","doi":"10.1080/01411594.2022.2153049","DOIUrl":null,"url":null,"abstract":"ABSTRACT The phase equilibria of the Mg-Ni-Gd ternary system were thermodynamically assessed by the CALPHAD (CALculation of PHAse Diagrams) method based on the thermodynamic descriptions of the constitutive binary systems and experimental phase equilibria data available in the literature. The substitutional model and sublattice model were employed to describe the solution phases and intermediate phases, respectively. The ternary phases τ1-τ6 were described as stoichiometric compound and the long-period stacking ordered phase 14H and 18R were described Mgx(TM, Mg)6(RE, Mg)8 model (TM = Transition Metal, RE = Rare Earth). A set of self-consistent thermodynamic parameters of the Mg-Ni-Gd system was obtained. Some representative isothermal section, liquidus projections and the related invariant reactions were calculated. Comparisons between the calculated results and experimental data show that almost all the reliable experimental data were satisfactorily reproduced by the present modeling. The reaction scheme for the whole ternary system is also presented.","PeriodicalId":19881,"journal":{"name":"Phase Transitions","volume":"96 1","pages":"29 - 42"},"PeriodicalIF":1.3000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic assessment of the Mg-Ni-Gd system with a general model description the long-period stacking ordered phases\",\"authors\":\"Chenguang Yang, Jiadong Wang, Liqin Wu, Qiuyu Zeng, Liwei Zhang\",\"doi\":\"10.1080/01411594.2022.2153049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The phase equilibria of the Mg-Ni-Gd ternary system were thermodynamically assessed by the CALPHAD (CALculation of PHAse Diagrams) method based on the thermodynamic descriptions of the constitutive binary systems and experimental phase equilibria data available in the literature. The substitutional model and sublattice model were employed to describe the solution phases and intermediate phases, respectively. The ternary phases τ1-τ6 were described as stoichiometric compound and the long-period stacking ordered phase 14H and 18R were described Mgx(TM, Mg)6(RE, Mg)8 model (TM = Transition Metal, RE = Rare Earth). A set of self-consistent thermodynamic parameters of the Mg-Ni-Gd system was obtained. Some representative isothermal section, liquidus projections and the related invariant reactions were calculated. Comparisons between the calculated results and experimental data show that almost all the reliable experimental data were satisfactorily reproduced by the present modeling. The reaction scheme for the whole ternary system is also presented.\",\"PeriodicalId\":19881,\"journal\":{\"name\":\"Phase Transitions\",\"volume\":\"96 1\",\"pages\":\"29 - 42\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phase Transitions\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/01411594.2022.2153049\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phase Transitions","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/01411594.2022.2153049","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Thermodynamic assessment of the Mg-Ni-Gd system with a general model description the long-period stacking ordered phases
ABSTRACT The phase equilibria of the Mg-Ni-Gd ternary system were thermodynamically assessed by the CALPHAD (CALculation of PHAse Diagrams) method based on the thermodynamic descriptions of the constitutive binary systems and experimental phase equilibria data available in the literature. The substitutional model and sublattice model were employed to describe the solution phases and intermediate phases, respectively. The ternary phases τ1-τ6 were described as stoichiometric compound and the long-period stacking ordered phase 14H and 18R were described Mgx(TM, Mg)6(RE, Mg)8 model (TM = Transition Metal, RE = Rare Earth). A set of self-consistent thermodynamic parameters of the Mg-Ni-Gd system was obtained. Some representative isothermal section, liquidus projections and the related invariant reactions were calculated. Comparisons between the calculated results and experimental data show that almost all the reliable experimental data were satisfactorily reproduced by the present modeling. The reaction scheme for the whole ternary system is also presented.
期刊介绍:
Phase Transitions is the only journal devoted exclusively to this important subject. It provides a focus for papers on most aspects of phase transitions in condensed matter. Although emphasis is placed primarily on experimental work, theoretical papers are welcome if they have some bearing on experimental results. The areas of interest include:
-structural phase transitions (ferroelectric, ferroelastic, multiferroic, order-disorder, Jahn-Teller, etc.) under a range of external parameters (temperature, pressure, strain, electric/magnetic fields, etc.)
-geophysical phase transitions
-metal-insulator phase transitions
-superconducting and superfluid transitions
-magnetic phase transitions
-critical phenomena and physical properties at phase transitions
-liquid crystals
-technological applications of phase transitions
-quantum phase transitions
Phase Transitions publishes both research papers and invited articles devoted to special topics. Major review papers are particularly welcome. A further emphasis of the journal is the publication of a selected number of small workshops, which are at the forefront of their field.