大陆弧变质脱碳的残余物和速率

Q1 Earth and Planetary Sciences
GSA Today Pub Date : 2020-05-01 DOI:10.1130/gsatg432a.1
E. Ramos, J. Lackey, J. Barnes, A. Fulton
{"title":"大陆弧变质脱碳的残余物和速率","authors":"E. Ramos, J. Lackey, J. Barnes, A. Fulton","doi":"10.1130/gsatg432a.1","DOIUrl":null,"url":null,"abstract":"Metamorphic decarbonation in magmatic arcs remains a challenge to impose in models of the geologic carbon cycle. Crustal reservoirs and metamorphic fluxes of carbon vary with depth in the crust, rock types and their stratigraphic succession, and through geologic time. When byproducts of metamorphic decarbonation (e.g., skarns) are exposed at Earth’s surface, they reveal a record of reactive transport of carbon dioxide (CO2). In this paper, we discuss the different modes of metamorphic decarbonation at multiple spatial and temporal scales and exemplify them through roof pendants of the Sierra Nevada batholith. We emphasize the utility of analogue models for metamorphic decarbonation to generate a range of decarbonation f luxes throughout the Cretaceous. Our model predicts that metamorphic CO2 fluxes from continental arcs during the Cretaceous were at least 2 times greater than the present cumulative CO2 flux from volcanoes, agreeing with previous estimates and further suggesting that metamorphic decarbonation was a principal driver of the Cretaceous hothouse climate. We lastly argue that our modeling framework can be used to quantify decarbonation fluxes throughout the Phanerozoic and thereby refine Earth systems models for paleoclimate reconstruction.","PeriodicalId":35784,"journal":{"name":"GSA Today","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Remnants and Rates of Metamorphic Decarbonation in Continental Arcs\",\"authors\":\"E. Ramos, J. Lackey, J. Barnes, A. Fulton\",\"doi\":\"10.1130/gsatg432a.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metamorphic decarbonation in magmatic arcs remains a challenge to impose in models of the geologic carbon cycle. Crustal reservoirs and metamorphic fluxes of carbon vary with depth in the crust, rock types and their stratigraphic succession, and through geologic time. When byproducts of metamorphic decarbonation (e.g., skarns) are exposed at Earth’s surface, they reveal a record of reactive transport of carbon dioxide (CO2). In this paper, we discuss the different modes of metamorphic decarbonation at multiple spatial and temporal scales and exemplify them through roof pendants of the Sierra Nevada batholith. We emphasize the utility of analogue models for metamorphic decarbonation to generate a range of decarbonation f luxes throughout the Cretaceous. Our model predicts that metamorphic CO2 fluxes from continental arcs during the Cretaceous were at least 2 times greater than the present cumulative CO2 flux from volcanoes, agreeing with previous estimates and further suggesting that metamorphic decarbonation was a principal driver of the Cretaceous hothouse climate. We lastly argue that our modeling framework can be used to quantify decarbonation fluxes throughout the Phanerozoic and thereby refine Earth systems models for paleoclimate reconstruction.\",\"PeriodicalId\":35784,\"journal\":{\"name\":\"GSA Today\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GSA Today\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1130/gsatg432a.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSA Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/gsatg432a.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 6

摘要

岩浆弧中的变质脱碳作用仍然是地质碳循环模型中的一个挑战。地壳储层和变质碳通量随地壳深度、岩石类型及其地层演替以及地质年代而变化。当变质脱碳的副产物(如夕卡岩)暴露在地球表面时,它们揭示了二氧化碳(CO2)反应性运输的记录。本文讨论了不同时空尺度的变质脱碳模式,并通过内华达山脉岩基顶板垂坠进行了举例说明。我们强调利用变质脱碳模拟模型来生成整个白垩纪的一系列脱碳通量。我们的模型预测,白垩纪时期大陆弧的变质二氧化碳通量至少是目前火山累积二氧化碳通量的2倍,与先前的估计一致,并进一步表明变质脱碳是白垩纪温室气候的主要驱动因素。我们最后认为,我们的建模框架可以用来量化整个显生宙的脱碳通量,从而改进古气候重建的地球系统模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remnants and Rates of Metamorphic Decarbonation in Continental Arcs
Metamorphic decarbonation in magmatic arcs remains a challenge to impose in models of the geologic carbon cycle. Crustal reservoirs and metamorphic fluxes of carbon vary with depth in the crust, rock types and their stratigraphic succession, and through geologic time. When byproducts of metamorphic decarbonation (e.g., skarns) are exposed at Earth’s surface, they reveal a record of reactive transport of carbon dioxide (CO2). In this paper, we discuss the different modes of metamorphic decarbonation at multiple spatial and temporal scales and exemplify them through roof pendants of the Sierra Nevada batholith. We emphasize the utility of analogue models for metamorphic decarbonation to generate a range of decarbonation f luxes throughout the Cretaceous. Our model predicts that metamorphic CO2 fluxes from continental arcs during the Cretaceous were at least 2 times greater than the present cumulative CO2 flux from volcanoes, agreeing with previous estimates and further suggesting that metamorphic decarbonation was a principal driver of the Cretaceous hothouse climate. We lastly argue that our modeling framework can be used to quantify decarbonation fluxes throughout the Phanerozoic and thereby refine Earth systems models for paleoclimate reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GSA Today
GSA Today Earth and Planetary Sciences-Geology
CiteScore
4.90
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信