{"title":"Hilbert空间中隐式微分系统的指数稳定性","authors":"N. Beghersa, M. Benabdallah, Mohamed Hariri","doi":"10.28924/2291-8639-21-2023-54","DOIUrl":null,"url":null,"abstract":"The aim of this research is to study the exponential stability of the stationary implicit system: Ax’(t) + Bx(t) = 0, where A and B are bounded operators in Hilbert spaces. The achieved results are the generalization of Liapounov Theorem for the spectrum of the operator pencil λA + B. We also establish the exponential stability conditions for the corresponding perturbed and quasi-linear implicit systems.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Exponential Stability of the Implicit Differential Systems in Hilbert Spaces\",\"authors\":\"N. Beghersa, M. Benabdallah, Mohamed Hariri\",\"doi\":\"10.28924/2291-8639-21-2023-54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this research is to study the exponential stability of the stationary implicit system: Ax’(t) + Bx(t) = 0, where A and B are bounded operators in Hilbert spaces. The achieved results are the generalization of Liapounov Theorem for the spectrum of the operator pencil λA + B. We also establish the exponential stability conditions for the corresponding perturbed and quasi-linear implicit systems.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Exponential Stability of the Implicit Differential Systems in Hilbert Spaces
The aim of this research is to study the exponential stability of the stationary implicit system: Ax’(t) + Bx(t) = 0, where A and B are bounded operators in Hilbert spaces. The achieved results are the generalization of Liapounov Theorem for the spectrum of the operator pencil λA + B. We also establish the exponential stability conditions for the corresponding perturbed and quasi-linear implicit systems.