Hilbert空间中隐式微分系统的指数稳定性

IF 0.7 Q2 MATHEMATICS
N. Beghersa, M. Benabdallah, Mohamed Hariri
{"title":"Hilbert空间中隐式微分系统的指数稳定性","authors":"N. Beghersa, M. Benabdallah, Mohamed Hariri","doi":"10.28924/2291-8639-21-2023-54","DOIUrl":null,"url":null,"abstract":"The aim of this research is to study the exponential stability of the stationary implicit system: Ax’(t) + Bx(t) = 0, where A and B are bounded operators in Hilbert spaces. The achieved results are the generalization of Liapounov Theorem for the spectrum of the operator pencil λA + B. We also establish the exponential stability conditions for the corresponding perturbed and quasi-linear implicit systems.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Exponential Stability of the Implicit Differential Systems in Hilbert Spaces\",\"authors\":\"N. Beghersa, M. Benabdallah, Mohamed Hariri\",\"doi\":\"10.28924/2291-8639-21-2023-54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this research is to study the exponential stability of the stationary implicit system: Ax’(t) + Bx(t) = 0, where A and B are bounded operators in Hilbert spaces. The achieved results are the generalization of Liapounov Theorem for the spectrum of the operator pencil λA + B. We also establish the exponential stability conditions for the corresponding perturbed and quasi-linear implicit systems.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-21-2023-54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-21-2023-54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究平稳隐式系统Ax ' (t) + Bx(t) = 0的指数稳定性,其中A和B是Hilbert空间中的有界算子。所得结果推广了λA + b算子谱的Liapounov定理,并建立了相应的摄动和拟线性隐式系统的指数稳定性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Exponential Stability of the Implicit Differential Systems in Hilbert Spaces
The aim of this research is to study the exponential stability of the stationary implicit system: Ax’(t) + Bx(t) = 0, where A and B are bounded operators in Hilbert spaces. The achieved results are the generalization of Liapounov Theorem for the spectrum of the operator pencil λA + B. We also establish the exponential stability conditions for the corresponding perturbed and quasi-linear implicit systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信