用列约简求解线性系统

Q4 Social Sciences
Romain Boulet
{"title":"用列约简求解线性系统","authors":"Romain Boulet","doi":"10.1080/07468342.2023.2186082","DOIUrl":null,"url":null,"abstract":"Summary In order to solve a system of linear equations, students or teachers are used to performing a row reduction with the Gauss method. In this paper we propose to adopt a column point of view through two fundamental subspaces of a matrix—its kernel and its image—linked to the homogeneous system and to a particular solution of the system. This paper provides a method to find the set of solutions of a system by performing a column reduction of a double augmented matrix of the system.","PeriodicalId":38710,"journal":{"name":"College Mathematics Journal","volume":"54 1","pages":"104 - 112"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Linear Systems with Column Reduction\",\"authors\":\"Romain Boulet\",\"doi\":\"10.1080/07468342.2023.2186082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In order to solve a system of linear equations, students or teachers are used to performing a row reduction with the Gauss method. In this paper we propose to adopt a column point of view through two fundamental subspaces of a matrix—its kernel and its image—linked to the homogeneous system and to a particular solution of the system. This paper provides a method to find the set of solutions of a system by performing a column reduction of a double augmented matrix of the system.\",\"PeriodicalId\":38710,\"journal\":{\"name\":\"College Mathematics Journal\",\"volume\":\"54 1\",\"pages\":\"104 - 112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"College Mathematics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07468342.2023.2186082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"College Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07468342.2023.2186082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要为了求解线性方程组,学生或教师习惯于用高斯方法进行行约简。在本文中,我们建议通过矩阵的两个基本子空间——它的核和它的映象——采用列观点,这两个子空间与齐次系统和系统的一个特定解相联系。本文提供了一种通过对系统的双增广矩阵进行列约简来求系统解集的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Linear Systems with Column Reduction
Summary In order to solve a system of linear equations, students or teachers are used to performing a row reduction with the Gauss method. In this paper we propose to adopt a column point of view through two fundamental subspaces of a matrix—its kernel and its image—linked to the homogeneous system and to a particular solution of the system. This paper provides a method to find the set of solutions of a system by performing a column reduction of a double augmented matrix of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
College Mathematics Journal
College Mathematics Journal Social Sciences-Education
CiteScore
0.20
自引率
0.00%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信