三次四倍、Gushel-Mukai四倍及其相关K3曲面的显式计算

Pub Date : 2022-04-25 DOI:10.1080/10586458.2023.2184882
Giovanni Staglianò
{"title":"三次四倍、Gushel-Mukai四倍及其相关K3曲面的显式计算","authors":"Giovanni Staglianò","doi":"10.1080/10586458.2023.2184882","DOIUrl":null,"url":null,"abstract":"We present some applications of the Macaulay2 software package SpecialFanoFourfolds, a package for working with Hodge-special cubic fourfolds and Hodge-special Gushel--Mukai fourfolds. In particular, we show how to construct new examples of such fourfolds, some of which turn out to be rational. We also describe how to calculate K3 surfaces associated with cubic or Gushel-Mukai fourfolds, which relies on an explicit unirationality of some moduli spaces of K3 surfaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Explicit Computations with Cubic Fourfolds, Gushel–Mukai Fourfolds, and their Associated K3 Surfaces\",\"authors\":\"Giovanni Staglianò\",\"doi\":\"10.1080/10586458.2023.2184882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present some applications of the Macaulay2 software package SpecialFanoFourfolds, a package for working with Hodge-special cubic fourfolds and Hodge-special Gushel--Mukai fourfolds. In particular, we show how to construct new examples of such fourfolds, some of which turn out to be rational. We also describe how to calculate K3 surfaces associated with cubic or Gushel-Mukai fourfolds, which relies on an explicit unirationality of some moduli spaces of K3 surfaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10586458.2023.2184882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10586458.2023.2184882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们介绍了Macaulay2软件包SpecialFanoFourfolds的一些应用,这是一个用于处理Hodge-special cubic four - fold和Hodge-special Gushel- Mukai four - fold的软件包。特别是,我们展示了如何构建这种四倍的新示例,其中一些被证明是合理的。我们还描述了如何计算与三次或Gushel-Mukai四倍相关的K3曲面,这依赖于K3曲面的一些模空间的显式唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Explicit Computations with Cubic Fourfolds, Gushel–Mukai Fourfolds, and their Associated K3 Surfaces
We present some applications of the Macaulay2 software package SpecialFanoFourfolds, a package for working with Hodge-special cubic fourfolds and Hodge-special Gushel--Mukai fourfolds. In particular, we show how to construct new examples of such fourfolds, some of which turn out to be rational. We also describe how to calculate K3 surfaces associated with cubic or Gushel-Mukai fourfolds, which relies on an explicit unirationality of some moduli spaces of K3 surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信