Han Guo, Jia Chen, Xujin Lv, Xin Qu, Baoyan Zhang, Gongqiu Peng, Yong Liu
{"title":"PPESK离心熔融静电纺丝的细观模拟","authors":"Han Guo, Jia Chen, Xujin Lv, Xin Qu, Baoyan Zhang, Gongqiu Peng, Yong Liu","doi":"10.1002/mats.202300036","DOIUrl":null,"url":null,"abstract":"<p>Poly(aryl ether sulfone ketone) (PPESK) is an engineering plastic with high strength, good heat resistance, insulation, and chemical corrosion resistance. The properties of PPESK fiber prepared by centrifugal melt electrospinning can be improved, and the method is efficient and environmentally friendly. This article employs a systematic analysis to investigate the impact of process parameters on the jet formation process, jet motion, fiber diameter, fiber yield, and changes in molecular chain orientation of PPESK. The analysis uses dissipative particle dynamics simulation to reveal that PPESK fibers can attain a certain degree of refinement, and fiber yield can be increased with an appropriate increase in rotational speed, temperature, and electric field force. Moreover, for PPESK with different chain lengths, longer molecular chains impede the untwisting of the molecular chains within the fiber, weakening the fiber orientation, increasing fiber diameter, and resulting in a slower fiber yield increase. These simulation results provide theoretical guidance for preparing PPESK ultrafine fibers with the required performance, shortening the exploration process of actual spinning, and saving time and labor.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoscopic Simulation of Centrifugal Melt Electrospinning of PPESK\",\"authors\":\"Han Guo, Jia Chen, Xujin Lv, Xin Qu, Baoyan Zhang, Gongqiu Peng, Yong Liu\",\"doi\":\"10.1002/mats.202300036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Poly(aryl ether sulfone ketone) (PPESK) is an engineering plastic with high strength, good heat resistance, insulation, and chemical corrosion resistance. The properties of PPESK fiber prepared by centrifugal melt electrospinning can be improved, and the method is efficient and environmentally friendly. This article employs a systematic analysis to investigate the impact of process parameters on the jet formation process, jet motion, fiber diameter, fiber yield, and changes in molecular chain orientation of PPESK. The analysis uses dissipative particle dynamics simulation to reveal that PPESK fibers can attain a certain degree of refinement, and fiber yield can be increased with an appropriate increase in rotational speed, temperature, and electric field force. Moreover, for PPESK with different chain lengths, longer molecular chains impede the untwisting of the molecular chains within the fiber, weakening the fiber orientation, increasing fiber diameter, and resulting in a slower fiber yield increase. These simulation results provide theoretical guidance for preparing PPESK ultrafine fibers with the required performance, shortening the exploration process of actual spinning, and saving time and labor.</p>\",\"PeriodicalId\":18157,\"journal\":{\"name\":\"Macromolecular Theory and Simulations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mats.202300036\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202300036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Mesoscopic Simulation of Centrifugal Melt Electrospinning of PPESK
Poly(aryl ether sulfone ketone) (PPESK) is an engineering plastic with high strength, good heat resistance, insulation, and chemical corrosion resistance. The properties of PPESK fiber prepared by centrifugal melt electrospinning can be improved, and the method is efficient and environmentally friendly. This article employs a systematic analysis to investigate the impact of process parameters on the jet formation process, jet motion, fiber diameter, fiber yield, and changes in molecular chain orientation of PPESK. The analysis uses dissipative particle dynamics simulation to reveal that PPESK fibers can attain a certain degree of refinement, and fiber yield can be increased with an appropriate increase in rotational speed, temperature, and electric field force. Moreover, for PPESK with different chain lengths, longer molecular chains impede the untwisting of the molecular chains within the fiber, weakening the fiber orientation, increasing fiber diameter, and resulting in a slower fiber yield increase. These simulation results provide theoretical guidance for preparing PPESK ultrafine fibers with the required performance, shortening the exploration process of actual spinning, and saving time and labor.
期刊介绍:
Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.