{"title":"图匹配的等变对数凹性","authors":"Shi-jie Li","doi":"10.5802/alco.284","DOIUrl":null,"url":null,"abstract":"For any graph, we show that the graded permutation representation of the graph automorphism group given by matchings is strongly equivariantly log-concave. The proof gives a family of equivariant injections inspired by a combinatorial map of Kratthenthaler and reduces to the hard Lefschetz theorem.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Equivariant log-concavity of graph matchings\",\"authors\":\"Shi-jie Li\",\"doi\":\"10.5802/alco.284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any graph, we show that the graded permutation representation of the graph automorphism group given by matchings is strongly equivariantly log-concave. The proof gives a family of equivariant injections inspired by a combinatorial map of Kratthenthaler and reduces to the hard Lefschetz theorem.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
For any graph, we show that the graded permutation representation of the graph automorphism group given by matchings is strongly equivariantly log-concave. The proof gives a family of equivariant injections inspired by a combinatorial map of Kratthenthaler and reduces to the hard Lefschetz theorem.