弧空间与手性辛核

IF 1.1 2区 数学 Q1 MATHEMATICS
T. Arakawa, Anne Moreau
{"title":"弧空间与手性辛核","authors":"T. Arakawa, Anne Moreau","doi":"10.4171/prims/57-3-3","DOIUrl":null,"url":null,"abstract":"We introduce the notion of chiral symplectic cores in a vertex Poisson variety, which can be viewed as analogs of symplectic leaves in Poisson varieties. As an application we show that any quasi-lisse vertex algebra is a quantization of the arc space of its associated variety, in the sense that its reduced singular support coincides with the arc space of its associated variety. We also show that the coordinate ring of the arc space of Slodowy slices is free over its vertex Poisson center, and the latter coincides with the vertex Poisson center of the coordinate ring of the arc space of the dual of the corresponding simple Lie algebra.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Arc Spaces and Chiral Symplectic Cores\",\"authors\":\"T. Arakawa, Anne Moreau\",\"doi\":\"10.4171/prims/57-3-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of chiral symplectic cores in a vertex Poisson variety, which can be viewed as analogs of symplectic leaves in Poisson varieties. As an application we show that any quasi-lisse vertex algebra is a quantization of the arc space of its associated variety, in the sense that its reduced singular support coincides with the arc space of its associated variety. We also show that the coordinate ring of the arc space of Slodowy slices is free over its vertex Poisson center, and the latter coincides with the vertex Poisson center of the coordinate ring of the arc space of the dual of the corresponding simple Lie algebra.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/prims/57-3-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/57-3-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

摘要

我们在顶点泊松变异中引入手性辛核的概念,它可以看作是泊松变异中的辛叶的类似物。作为一个应用,我们证明了任何拟lisse顶点代数都是它的关联变量的弧空间的量化,在某种意义上,它的简化奇异支持与它的关联变量的弧空间重合。我们还证明了Slodowy切片的弧空间的坐标环在其顶点泊松中心上是自由的,并且后者与相应的简单李代数对偶的弧空间的坐标环的顶点泊松中心重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arc Spaces and Chiral Symplectic Cores
We introduce the notion of chiral symplectic cores in a vertex Poisson variety, which can be viewed as analogs of symplectic leaves in Poisson varieties. As an application we show that any quasi-lisse vertex algebra is a quantization of the arc space of its associated variety, in the sense that its reduced singular support coincides with the arc space of its associated variety. We also show that the coordinate ring of the arc space of Slodowy slices is free over its vertex Poisson center, and the latter coincides with the vertex Poisson center of the coordinate ring of the arc space of the dual of the corresponding simple Lie algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信