高摩尔质量商品聚丙烯的多变量流变模型

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Carlos A. Castor Jr., André I. O. de A. Fialho, Bruno F. Oechsler, José C. Pinto
{"title":"高摩尔质量商品聚丙烯的多变量流变模型","authors":"Carlos A. Castor Jr.,&nbsp;André I. O. de A. Fialho,&nbsp;Bruno F. Oechsler,&nbsp;José C. Pinto","doi":"10.1002/mren.202300008","DOIUrl":null,"url":null,"abstract":"<p>This work investigates the fitting performance of conventional rheological models and the development of multivariable rheological models to reproduce experimental rheological data of different industrial grades of linear isotactic polypropylene (iPP) having high mass average molar masses, Mm (164–404 kg mol<sup>−1</sup>), at three temperature values (180–220 °C) over a wide range of shear rates (10<sup>−1</sup>–10<sup>4</sup> s<sup>−1</sup>). A shear thinning behavior is found in all investigated conditions. However, a low shear rate primary Newtonian plateau for a short shear rate range is only identified for the smallest Mm among those investigated, and for higher Mm such primary plateaus are even found at shorter shear rate range. Among the investigated models, only Cross and Carreau–Yasuda models are effective to reproduce the data for a specific PP grade. Two modified models are proposed that incorporate three variables. In the modified Cross Model, it has been shown that the characteristic time (<i>λ</i>) between the Newtonian plateau at the low shear rates and the shear-rate range with shear-thinning behavior depends exponentially on the Mm, and it does not depend on the temperature. Both proposed models fit very well with the experimental data with shear thinning behavior for a wide range of Mm.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariable Rheological Models for Commercial Polypropylene with High Molar Masses\",\"authors\":\"Carlos A. Castor Jr.,&nbsp;André I. O. de A. Fialho,&nbsp;Bruno F. Oechsler,&nbsp;José C. Pinto\",\"doi\":\"10.1002/mren.202300008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work investigates the fitting performance of conventional rheological models and the development of multivariable rheological models to reproduce experimental rheological data of different industrial grades of linear isotactic polypropylene (iPP) having high mass average molar masses, Mm (164–404 kg mol<sup>−1</sup>), at three temperature values (180–220 °C) over a wide range of shear rates (10<sup>−1</sup>–10<sup>4</sup> s<sup>−1</sup>). A shear thinning behavior is found in all investigated conditions. However, a low shear rate primary Newtonian plateau for a short shear rate range is only identified for the smallest Mm among those investigated, and for higher Mm such primary plateaus are even found at shorter shear rate range. Among the investigated models, only Cross and Carreau–Yasuda models are effective to reproduce the data for a specific PP grade. Two modified models are proposed that incorporate three variables. In the modified Cross Model, it has been shown that the characteristic time (<i>λ</i>) between the Newtonian plateau at the low shear rates and the shear-rate range with shear-thinning behavior depends exponentially on the Mm, and it does not depend on the temperature. Both proposed models fit very well with the experimental data with shear thinning behavior for a wide range of Mm.</p>\",\"PeriodicalId\":18052,\"journal\":{\"name\":\"Macromolecular Reaction Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Reaction Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300008\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了传统流变模型的拟合性能和多变量流变模型的发展,以再现具有高质量平均摩尔质量Mm (164-404 kg mol - 1)的不同工业等级线性等规聚丙烯(iPP)在三种温度值(180-220°C)和大范围剪切速率(10−1 - 104 s−1)下的实验流变数据。在所有研究条件下都发现了剪切减薄行为。然而,在这些研究中,只有在最小的Mm中发现了短剪切速率范围内的低剪切速率初级牛顿高原,而对于较大的Mm,甚至在较短的剪切速率范围内也发现了这样的初级高原。在研究的模型中,只有Cross和careau - yasuda模型能够有效地再现特定PP等级的数据。提出了两个包含三个变量的修正模型。修正的Cross模型表明,低剪切速率下的牛顿高原与具有剪切变薄行为的剪切速率区间之间的特征时间λ与Mm呈指数关系,而与温度无关。两种模型均与实验数据吻合良好,在较大的Mm范围内具有剪切减薄特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multivariable Rheological Models for Commercial Polypropylene with High Molar Masses

Multivariable Rheological Models for Commercial Polypropylene with High Molar Masses

This work investigates the fitting performance of conventional rheological models and the development of multivariable rheological models to reproduce experimental rheological data of different industrial grades of linear isotactic polypropylene (iPP) having high mass average molar masses, Mm (164–404 kg mol−1), at three temperature values (180–220 °C) over a wide range of shear rates (10−1–104 s−1). A shear thinning behavior is found in all investigated conditions. However, a low shear rate primary Newtonian plateau for a short shear rate range is only identified for the smallest Mm among those investigated, and for higher Mm such primary plateaus are even found at shorter shear rate range. Among the investigated models, only Cross and Carreau–Yasuda models are effective to reproduce the data for a specific PP grade. Two modified models are proposed that incorporate three variables. In the modified Cross Model, it has been shown that the characteristic time (λ) between the Newtonian plateau at the low shear rates and the shear-rate range with shear-thinning behavior depends exponentially on the Mm, and it does not depend on the temperature. Both proposed models fit very well with the experimental data with shear thinning behavior for a wide range of Mm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Reaction Engineering
Macromolecular Reaction Engineering 工程技术-高分子科学
CiteScore
2.60
自引率
20.00%
发文量
55
审稿时长
3 months
期刊介绍: Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信