引进无性系木材作为乐器制造材料的树状声学特性研究

IF 0.7 Q3 FORESTRY
V. Fedyukov, E. Saldaeva, Maria S. Chernova, V. Chernov
{"title":"引进无性系木材作为乐器制造材料的树状声学特性研究","authors":"V. Fedyukov, E. Saldaeva, Maria S. Chernova, V. Chernov","doi":"10.15177/seefor.19-18","DOIUrl":null,"url":null,"abstract":"Background and Purpose: Studies of the physical-mechanical and acoustic properties of maple wood as a potential material for musical instruments manufacturing are extremely scarce. Related to this, dendro-acoustic studies of maples introduced by geographic origin are of great practical importance in order to create target plantations with predicted technical quality of wood.\nMaterials and Methods: Maples from abroad introduced by geographic origin into the Botanical Garden of the Volga State University of Technology of the Republic of Mari El of Russia were used for the research. For comparison, the Norway maple of local origin ( Acer platanoides L.) was selected. The studies were carried out by the frequency-amplitude method for determining Young's dynamic modulus and the acoustic constant of sound emission according to the criterion of academician N. Andreyev.\nResults: It was revealed that there are differences in the density and dendroacoustic indices of maple wood of local origin and maple trees introduced by geographic origin. Norway maple ( Acer platanoides L.) turned out to possess the largest acoustic constant characterizing the resonant properties of wood. Introduced maple trees, plane-tree maple ( Acer pseudoplatanus L.) and sugar maple ( Acer saccharinum L.) are only slightly inferior in terms of this indicator.\nConclusions: The dendroacoustic properties of maple wood are generally much lower than that of resonant spruce. Consequently, the acoustic role of maple wood in the back plates of the violin and other string instruments is completely different than that of the top plate made from the resonant material of coniferous species. To reveal this difference in more detail, comparative studies and dendroacoustic identification of maple wood in blanks and musical instruments with different levels of acoustic characteristics are necessary.","PeriodicalId":54023,"journal":{"name":"SEEFOR-South-East European Forestry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15177/seefor.19-18","citationCount":"2","resultStr":"{\"title\":\"Research into Dendro-Acoustic Properties of Intro-duced Clones’ Wood as Material for Manufacturing Musical Instruments\",\"authors\":\"V. Fedyukov, E. Saldaeva, Maria S. Chernova, V. Chernov\",\"doi\":\"10.15177/seefor.19-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background and Purpose: Studies of the physical-mechanical and acoustic properties of maple wood as a potential material for musical instruments manufacturing are extremely scarce. Related to this, dendro-acoustic studies of maples introduced by geographic origin are of great practical importance in order to create target plantations with predicted technical quality of wood.\\nMaterials and Methods: Maples from abroad introduced by geographic origin into the Botanical Garden of the Volga State University of Technology of the Republic of Mari El of Russia were used for the research. For comparison, the Norway maple of local origin ( Acer platanoides L.) was selected. The studies were carried out by the frequency-amplitude method for determining Young's dynamic modulus and the acoustic constant of sound emission according to the criterion of academician N. Andreyev.\\nResults: It was revealed that there are differences in the density and dendroacoustic indices of maple wood of local origin and maple trees introduced by geographic origin. Norway maple ( Acer platanoides L.) turned out to possess the largest acoustic constant characterizing the resonant properties of wood. Introduced maple trees, plane-tree maple ( Acer pseudoplatanus L.) and sugar maple ( Acer saccharinum L.) are only slightly inferior in terms of this indicator.\\nConclusions: The dendroacoustic properties of maple wood are generally much lower than that of resonant spruce. Consequently, the acoustic role of maple wood in the back plates of the violin and other string instruments is completely different than that of the top plate made from the resonant material of coniferous species. To reveal this difference in more detail, comparative studies and dendroacoustic identification of maple wood in blanks and musical instruments with different levels of acoustic characteristics are necessary.\",\"PeriodicalId\":54023,\"journal\":{\"name\":\"SEEFOR-South-East European Forestry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15177/seefor.19-18\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SEEFOR-South-East European Forestry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15177/seefor.19-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEEFOR-South-East European Forestry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15177/seefor.19-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 2

摘要

背景与目的:枫木作为一种潜在的乐器制造材料,其物理力学和声学特性的研究非常少。与此相关,对地理来源引入的枫树的树形声学研究对于创建具有预测木材技术质量的目标人工林具有重要的实际意义。材料与方法:采用俄罗斯马里埃尔共和国伏尔加国立理工大学植物园按地理来源引进的国外枫树进行研究。为了进行比较,选择了当地产的挪威枫(Acer platanoides L.)。根据N. Andreyev院士的判据,采用频率-振幅法确定杨氏动模量和声发射声常数。结果:发现本地枫材与地理引进枫材在密度和树木声学指标上存在差异。挪威枫(Acer platanoides L.)被证明具有表征木材共振特性的最大声学常数。引种枫树、梧桐树槭(Acer pseudoplatanus L.)和糖槭(Acer saccharinum L.)在这一指标上仅略逊一筹。结论:枫木的树突声学特性普遍远低于共振云杉。因此,在小提琴和其他弦乐器的背板中,枫木的声学作用与由针叶树的共振材料制成的顶板完全不同。为了更详细地揭示这种差异,有必要对不同声学特征水平的毛坯和乐器中的枫木进行比较研究和树突声学鉴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research into Dendro-Acoustic Properties of Intro-duced Clones’ Wood as Material for Manufacturing Musical Instruments
Background and Purpose: Studies of the physical-mechanical and acoustic properties of maple wood as a potential material for musical instruments manufacturing are extremely scarce. Related to this, dendro-acoustic studies of maples introduced by geographic origin are of great practical importance in order to create target plantations with predicted technical quality of wood. Materials and Methods: Maples from abroad introduced by geographic origin into the Botanical Garden of the Volga State University of Technology of the Republic of Mari El of Russia were used for the research. For comparison, the Norway maple of local origin ( Acer platanoides L.) was selected. The studies were carried out by the frequency-amplitude method for determining Young's dynamic modulus and the acoustic constant of sound emission according to the criterion of academician N. Andreyev. Results: It was revealed that there are differences in the density and dendroacoustic indices of maple wood of local origin and maple trees introduced by geographic origin. Norway maple ( Acer platanoides L.) turned out to possess the largest acoustic constant characterizing the resonant properties of wood. Introduced maple trees, plane-tree maple ( Acer pseudoplatanus L.) and sugar maple ( Acer saccharinum L.) are only slightly inferior in terms of this indicator. Conclusions: The dendroacoustic properties of maple wood are generally much lower than that of resonant spruce. Consequently, the acoustic role of maple wood in the back plates of the violin and other string instruments is completely different than that of the top plate made from the resonant material of coniferous species. To reveal this difference in more detail, comparative studies and dendroacoustic identification of maple wood in blanks and musical instruments with different levels of acoustic characteristics are necessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
6
审稿时长
8 weeks
期刊介绍: The primary aim of the SEEFOR journal is to publish original, novel and quality articles and thus contribute to the development of scientific, research, operational and other activities in the field of forestry. Besides scientific, the objectives of the SEEFOR are educational and informative as well. SEEFOR should stimulate intensive professional and academic work, teaching, as well as physical cooperation of institutions and interdisciplinary collaboration, a faster ascendance and affirmation of young scientific personnel. SEEFOR should contribute to the stronger cooperation between the science, practice and society, and to the overall dissemination of the forestry way-of thinking. The scope of the journal’s interests encompasses all ecological, economical, technical, technological, social and other aspects of forestry and wood technology. The journal is open for publishing research from all geographical zones and study locations, whether they are conducted in natural forests, plantations or urban environments, as long as methods used in the research and obtained results are of high interest and importance to South-east European and international forestry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信