有效钻孔和填充驯服双曲3流形

IF 1.1 3区 数学 Q1 MATHEMATICS
D. Futer, J. Purcell, S. Schleimer
{"title":"有效钻孔和填充驯服双曲3流形","authors":"D. Futer, J. Purcell, S. Schleimer","doi":"10.4171/CMH/536","DOIUrl":null,"url":null,"abstract":"We give effective bilipschitz bounds on the change in metric between thick parts of a cusped hyperbolic 3-manifold and its long Dehn fillings. In the thin parts of the manifold, we give effective bounds on the change in complex length of a short closed geodesic. These results quantify the filling theorem of Brock and Bromberg, and extend previous results of the authors from finite volume hyperbolic 3-manifolds to any tame hyperbolic 3-manifold. To prove the main results, we assemble tools from Kleinian group theory into a template for transferring theorems about finite-volume manifolds into theorems about infinite-volume manifolds. We also prove and apply an infinite-volume version of the 6-Theorem.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effective drilling and filling of tame hyperbolic 3-manifolds\",\"authors\":\"D. Futer, J. Purcell, S. Schleimer\",\"doi\":\"10.4171/CMH/536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give effective bilipschitz bounds on the change in metric between thick parts of a cusped hyperbolic 3-manifold and its long Dehn fillings. In the thin parts of the manifold, we give effective bounds on the change in complex length of a short closed geodesic. These results quantify the filling theorem of Brock and Bromberg, and extend previous results of the authors from finite volume hyperbolic 3-manifolds to any tame hyperbolic 3-manifold. To prove the main results, we assemble tools from Kleinian group theory into a template for transferring theorems about finite-volume manifolds into theorems about infinite-volume manifolds. We also prove and apply an infinite-volume version of the 6-Theorem.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/CMH/536\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/536","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们给出了顶角双曲3-流形的厚部分与其长Dehn填充之间度量变化的有效bilipschitz界。在流形的薄部分,我们给出了短封闭测地线复长度变化的有效界。这些结果定量化了Brock和Bromberg的填充定理,并将作者以前的结论从有限体积双曲3-流形推广到任何驯服的双曲3-流形。为了证明主要结果,我们将Kleinian群论中的工具组合成一个模板,用于将有限体积流形定理转化为无限体积流形定理。我们还证明并应用了6定理的一个无限体积版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effective drilling and filling of tame hyperbolic 3-manifolds
We give effective bilipschitz bounds on the change in metric between thick parts of a cusped hyperbolic 3-manifold and its long Dehn fillings. In the thin parts of the manifold, we give effective bounds on the change in complex length of a short closed geodesic. These results quantify the filling theorem of Brock and Bromberg, and extend previous results of the authors from finite volume hyperbolic 3-manifolds to any tame hyperbolic 3-manifold. To prove the main results, we assemble tools from Kleinian group theory into a template for transferring theorems about finite-volume manifolds into theorems about infinite-volume manifolds. We also prove and apply an infinite-volume version of the 6-Theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals. Commentarii Mathematici Helvetici is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信