Smocked度量空间及其切锥

IF 0.4 Q4 MATHEMATICS
C. Sormani, Demetre Kazaras, David Afrifa, Victoria Antonetti, M. Dinowitz, H. Drillick, M. Farahzad, Shanell George, Aleah Lydeatte Hepburn, Leslie Trang Huynh, Emilio Minichiello, Julinda Mujo Pillati, Srivishnupreeth Rendla, A. Yamin
{"title":"Smocked度量空间及其切锥","authors":"C. Sormani, Demetre Kazaras, David Afrifa, Victoria Antonetti, M. Dinowitz, H. Drillick, M. Farahzad, Shanell George, Aleah Lydeatte Hepburn, Leslie Trang Huynh, Emilio Minichiello, Julinda Mujo Pillati, Srivishnupreeth Rendla, A. Yamin","doi":"10.35834/2021/3301027","DOIUrl":null,"url":null,"abstract":"We introduce the notion of a smocked metric spaces and explore the balls and geodesics in a collection of different smocked spaces. We find their rescaled Gromov-Hausdorff limits and prove these tangent cones at infinity exist, are unique, and are normed spaces. We close with a variety of open questions suitable for advanced undergraduates, masters students, and doctoral students.","PeriodicalId":42784,"journal":{"name":"Missouri Journal of Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Smocked Metric Spaces and Their Tangent Cones\",\"authors\":\"C. Sormani, Demetre Kazaras, David Afrifa, Victoria Antonetti, M. Dinowitz, H. Drillick, M. Farahzad, Shanell George, Aleah Lydeatte Hepburn, Leslie Trang Huynh, Emilio Minichiello, Julinda Mujo Pillati, Srivishnupreeth Rendla, A. Yamin\",\"doi\":\"10.35834/2021/3301027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of a smocked metric spaces and explore the balls and geodesics in a collection of different smocked spaces. We find their rescaled Gromov-Hausdorff limits and prove these tangent cones at infinity exist, are unique, and are normed spaces. We close with a variety of open questions suitable for advanced undergraduates, masters students, and doctoral students.\",\"PeriodicalId\":42784,\"journal\":{\"name\":\"Missouri Journal of Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Missouri Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35834/2021/3301027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Missouri Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35834/2021/3301027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们引入了罩衣度量空间的概念,并探讨了不同罩衣空间集合中的球和测地线。我们找到了它们的重新标度的Gromov-Hausdorff极限,并证明了这些切锥在无穷远处存在,是唯一的,并且是赋范空间。我们以适合高年级本科生、硕士生和博士生的各种开放性问题结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smocked Metric Spaces and Their Tangent Cones
We introduce the notion of a smocked metric spaces and explore the balls and geodesics in a collection of different smocked spaces. We find their rescaled Gromov-Hausdorff limits and prove these tangent cones at infinity exist, are unique, and are normed spaces. We close with a variety of open questions suitable for advanced undergraduates, masters students, and doctoral students.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
9
期刊介绍: Missouri Journal of Mathematical Sciences (MJMS) publishes well-motivated original research articles as well as expository and survey articles of exceptional quality in mathematical sciences. A section of the MJMS is also devoted to interesting mathematical problems and solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信