C. Sormani, Demetre Kazaras, David Afrifa, Victoria Antonetti, M. Dinowitz, H. Drillick, M. Farahzad, Shanell George, Aleah Lydeatte Hepburn, Leslie Trang Huynh, Emilio Minichiello, Julinda Mujo Pillati, Srivishnupreeth Rendla, A. Yamin
{"title":"Smocked度量空间及其切锥","authors":"C. Sormani, Demetre Kazaras, David Afrifa, Victoria Antonetti, M. Dinowitz, H. Drillick, M. Farahzad, Shanell George, Aleah Lydeatte Hepburn, Leslie Trang Huynh, Emilio Minichiello, Julinda Mujo Pillati, Srivishnupreeth Rendla, A. Yamin","doi":"10.35834/2021/3301027","DOIUrl":null,"url":null,"abstract":"We introduce the notion of a smocked metric spaces and explore the balls and geodesics in a collection of different smocked spaces. We find their rescaled Gromov-Hausdorff limits and prove these tangent cones at infinity exist, are unique, and are normed spaces. We close with a variety of open questions suitable for advanced undergraduates, masters students, and doctoral students.","PeriodicalId":42784,"journal":{"name":"Missouri Journal of Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Smocked Metric Spaces and Their Tangent Cones\",\"authors\":\"C. Sormani, Demetre Kazaras, David Afrifa, Victoria Antonetti, M. Dinowitz, H. Drillick, M. Farahzad, Shanell George, Aleah Lydeatte Hepburn, Leslie Trang Huynh, Emilio Minichiello, Julinda Mujo Pillati, Srivishnupreeth Rendla, A. Yamin\",\"doi\":\"10.35834/2021/3301027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of a smocked metric spaces and explore the balls and geodesics in a collection of different smocked spaces. We find their rescaled Gromov-Hausdorff limits and prove these tangent cones at infinity exist, are unique, and are normed spaces. We close with a variety of open questions suitable for advanced undergraduates, masters students, and doctoral students.\",\"PeriodicalId\":42784,\"journal\":{\"name\":\"Missouri Journal of Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Missouri Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35834/2021/3301027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Missouri Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35834/2021/3301027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We introduce the notion of a smocked metric spaces and explore the balls and geodesics in a collection of different smocked spaces. We find their rescaled Gromov-Hausdorff limits and prove these tangent cones at infinity exist, are unique, and are normed spaces. We close with a variety of open questions suitable for advanced undergraduates, masters students, and doctoral students.
期刊介绍:
Missouri Journal of Mathematical Sciences (MJMS) publishes well-motivated original research articles as well as expository and survey articles of exceptional quality in mathematical sciences. A section of the MJMS is also devoted to interesting mathematical problems and solutions.