具有非线性项的Atangana–Baleanu-Caputo分数阶微分方程解的全局存在唯一性及其近似解

IF 1.4 Q2 MATHEMATICS, APPLIED
M. Hassouna, E. H. El Kinani, A. Ouhadan
{"title":"具有非线性项的Atangana–Baleanu-Caputo分数阶微分方程解的全局存在唯一性及其近似解","authors":"M. Hassouna, E. H. El Kinani, A. Ouhadan","doi":"10.1155/2021/5675789","DOIUrl":null,"url":null,"abstract":"In this paper, a class of fractional order differential equation expressed with Atangana–Baleanu Caputo derivative with nonlinear term is discussed. The existence and uniqueness of the solution of the general fractional differential equation are expressed. To present numerical results, we construct approximate scheme to be used for producing numerical solutions of the considered fractional differential equation. As an illustrative numerical example, we consider two Riccati fractional differential equations with different derivatives: Atangana–Baleanu Caputo and Caputo derivatives. Finally, the study of those examples verifies the theoretical results of global existence and uniqueness of solution. Moreover, numerical results underline the difference between solutions of both examples.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Global Existence and Uniqueness of Solution of Atangana–Baleanu Caputo Fractional Differential Equation with Nonlinear Term and Approximate Solutions\",\"authors\":\"M. Hassouna, E. H. El Kinani, A. Ouhadan\",\"doi\":\"10.1155/2021/5675789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a class of fractional order differential equation expressed with Atangana–Baleanu Caputo derivative with nonlinear term is discussed. The existence and uniqueness of the solution of the general fractional differential equation are expressed. To present numerical results, we construct approximate scheme to be used for producing numerical solutions of the considered fractional differential equation. As an illustrative numerical example, we consider two Riccati fractional differential equations with different derivatives: Atangana–Baleanu Caputo and Caputo derivatives. Finally, the study of those examples verifies the theoretical results of global existence and uniqueness of solution. Moreover, numerical results underline the difference between solutions of both examples.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2021/5675789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5675789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

本文讨论了一类用非线性项的Atangana–Baleanu-Caputo导数表示的分数阶微分方程。给出了一般分数阶微分方程解的存在性和唯一性。为了给出数值结果,我们构造了近似格式,用于生成所考虑的分数阶微分方程的数值解。作为一个说明性的数值例子,我们考虑了两个具有不同导数的Riccati分数阶微分方程:Atangana–Baleanu-Caputo和Caputo导数。最后,对这些例子的研究验证了解的全局存在性和唯一性的理论结果。此外,数值结果强调了两个例子的解之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Existence and Uniqueness of Solution of Atangana–Baleanu Caputo Fractional Differential Equation with Nonlinear Term and Approximate Solutions
In this paper, a class of fractional order differential equation expressed with Atangana–Baleanu Caputo derivative with nonlinear term is discussed. The existence and uniqueness of the solution of the general fractional differential equation are expressed. To present numerical results, we construct approximate scheme to be used for producing numerical solutions of the considered fractional differential equation. As an illustrative numerical example, we consider two Riccati fractional differential equations with different derivatives: Atangana–Baleanu Caputo and Caputo derivatives. Finally, the study of those examples verifies the theoretical results of global existence and uniqueness of solution. Moreover, numerical results underline the difference between solutions of both examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信