Hurwitz多项式Hadamard可分解性的简单必要条件

IF 0.7 4区 数学 Q2 Mathematics
S. Bialas, M. Góra
{"title":"Hurwitz多项式Hadamard可分解性的简单必要条件","authors":"S. Bialas, M. Góra","doi":"10.13001/ela.2021.5957","DOIUrl":null,"url":null,"abstract":"In this paper, we focus the attention on the Hadamard factorization problem for Hurwitz polynomials. We give a new necessary condition for Hadamard factorizability of Hurwitz stable polynomials of degree $n\\geq 4$ and show that for $n= 4$ this condition is also sufficient. The effectiveness of the result is illustrated during construction of examples of stable polynomials that are not Hadamard factorizable.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple necessary conditions for Hadamard factorizability of Hurwitz polynomials\",\"authors\":\"S. Bialas, M. Góra\",\"doi\":\"10.13001/ela.2021.5957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus the attention on the Hadamard factorization problem for Hurwitz polynomials. We give a new necessary condition for Hadamard factorizability of Hurwitz stable polynomials of degree $n\\\\geq 4$ and show that for $n= 4$ this condition is also sufficient. The effectiveness of the result is illustrated during construction of examples of stable polynomials that are not Hadamard factorizable.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2021.5957\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2021.5957","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究Hurwitz多项式的Hadamard因子分解问题。我们给出了阶为$n\geq4$的Hurwitz稳定多项式的Hadamard可分解性的一个新的必要条件,并证明了对于$n=4$,这个条件也是充分的。在构造不可Hadamard因子分解的稳定多项式的例子时,说明了结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple necessary conditions for Hadamard factorizability of Hurwitz polynomials
In this paper, we focus the attention on the Hadamard factorization problem for Hurwitz polynomials. We give a new necessary condition for Hadamard factorizability of Hurwitz stable polynomials of degree $n\geq 4$ and show that for $n= 4$ this condition is also sufficient. The effectiveness of the result is illustrated during construction of examples of stable polynomials that are not Hadamard factorizable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信