参数为$(4n,n+2,n-2,2,4,n)$和$(4n,3n-2,3n-6,2n-2,4,n)$的可分设计图

IF 0.4 Q4 MATHEMATICS
L. Shalaginov
{"title":"参数为$(4n,n+2,n-2,2,4,n)$和$(4n,3n-2,3n-6,2n-2,4,n)$的可分设计图","authors":"L. Shalaginov","doi":"10.33048/semi.2021.18.134","DOIUrl":null,"url":null,"abstract":"A k-regular graph is called a divisible design graph (DDG for short) if its vertex set can be partitioned into m classes of size n, such that two distinct vertices from the same class have exactly λ1 common neighbors, and two vertices from different classes have exactly λ2 common neighbors. 4 × n-lattice graph is the line graph of K4,n. This graph is a DDG with parameters (4n, n+ 2, n − 2, 2, 4, n). In the paper we consider DDGs with these parameters. We prove that if n is odd then such graph can only be a 4 × n-lattice graph. If n is even we characterise all DDGs with such parameters. Moreover, we characterise all DDGs with parameters (4n, 3n − 2, 3n − 6, 2n − 2, 4, n) which are related to 4 × n-lattice graphs.","PeriodicalId":45858,"journal":{"name":"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$\",\"authors\":\"L. Shalaginov\",\"doi\":\"10.33048/semi.2021.18.134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A k-regular graph is called a divisible design graph (DDG for short) if its vertex set can be partitioned into m classes of size n, such that two distinct vertices from the same class have exactly λ1 common neighbors, and two vertices from different classes have exactly λ2 common neighbors. 4 × n-lattice graph is the line graph of K4,n. This graph is a DDG with parameters (4n, n+ 2, n − 2, 2, 4, n). In the paper we consider DDGs with these parameters. We prove that if n is odd then such graph can only be a 4 × n-lattice graph. If n is even we characterise all DDGs with such parameters. Moreover, we characterise all DDGs with parameters (4n, 3n − 2, 3n − 6, 2n − 2, 4, n) which are related to 4 × n-lattice graphs.\",\"PeriodicalId\":45858,\"journal\":{\"name\":\"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33048/semi.2021.18.134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33048/semi.2021.18.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

如果一个k正则图的顶点集可以被划分为m个大小为n的类,使得来自同一类的两个不同的顶点恰好有λ1个共同邻居,并且来自不同类的两个顶点恰好有λ2个共同邻居,则称为可分设计图(DDG)。4 × n晶格图是K4,n的线形图。该图是一个参数为(4n, n+ 2, n−2,2,4,n)的DDG。本文考虑具有这些参数的DDG。我们证明了如果n是奇数,那么这样的图只能是一个4 × n格图。如果n是偶数,我们用这样的参数来描述所有的ddg。此外,我们用参数(4n, 3n−2,3n−6,2n−2,4,n)描述了所有与4 × n晶格图相关的ddg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divisible design graphs with parameters $(4n,n+2,n-2,2,4,n)$ and $(4n,3n-2,3n-6,2n-2,4,n)$
A k-regular graph is called a divisible design graph (DDG for short) if its vertex set can be partitioned into m classes of size n, such that two distinct vertices from the same class have exactly λ1 common neighbors, and two vertices from different classes have exactly λ2 common neighbors. 4 × n-lattice graph is the line graph of K4,n. This graph is a DDG with parameters (4n, n+ 2, n − 2, 2, 4, n). In the paper we consider DDGs with these parameters. We prove that if n is odd then such graph can only be a 4 × n-lattice graph. If n is even we characterise all DDGs with such parameters. Moreover, we characterise all DDGs with parameters (4n, 3n − 2, 3n − 6, 2n − 2, 4, n) which are related to 4 × n-lattice graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
25.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信