{"title":"基于正则化深度神经网络的心脏病智能诊断系统","authors":"P. Rani, Rajneesh Kumar, Anurag Jain","doi":"10.22201/icat.24486736e.2023.21.1.1544","DOIUrl":null,"url":null,"abstract":"Heart disease is one of the deadly diseases. Timely detection of the disease can prevent mortality. In this paper, an intelligent system is proposed for the diagnosis of heart disease using clinical parameters at early stages. The system is developed using the Regularized Deep Neural Network model (Reg-DNN). Cleveland heart disease dataset has been used for training the model. Regularization has been achieved by using dropout and L2 regularization. Efficiency of Reg-DNN was evaluated by using hold-out validation method.70% data was used for training the model and 30% data was used for testing the model. Results indicate that Reg-DNN provided better performance than conventional DNN. Regularization has helped to overcome overfitting. Reg-DNN has achieved an accuracy of 94.79%. Results achieved are quite promising as compared to existing systems in the literature. Authors developed a system containing a graphical user interface. So, the system can be easily used by anyone to diagnose heart disease using the clinical parameters.","PeriodicalId":15073,"journal":{"name":"Journal of Applied Research and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent System for Heart Disease Diagnosis using Regularized Deep Neural Network\",\"authors\":\"P. Rani, Rajneesh Kumar, Anurag Jain\",\"doi\":\"10.22201/icat.24486736e.2023.21.1.1544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart disease is one of the deadly diseases. Timely detection of the disease can prevent mortality. In this paper, an intelligent system is proposed for the diagnosis of heart disease using clinical parameters at early stages. The system is developed using the Regularized Deep Neural Network model (Reg-DNN). Cleveland heart disease dataset has been used for training the model. Regularization has been achieved by using dropout and L2 regularization. Efficiency of Reg-DNN was evaluated by using hold-out validation method.70% data was used for training the model and 30% data was used for testing the model. Results indicate that Reg-DNN provided better performance than conventional DNN. Regularization has helped to overcome overfitting. Reg-DNN has achieved an accuracy of 94.79%. Results achieved are quite promising as compared to existing systems in the literature. Authors developed a system containing a graphical user interface. So, the system can be easily used by anyone to diagnose heart disease using the clinical parameters.\",\"PeriodicalId\":15073,\"journal\":{\"name\":\"Journal of Applied Research and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22201/icat.24486736e.2023.21.1.1544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22201/icat.24486736e.2023.21.1.1544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
An Intelligent System for Heart Disease Diagnosis using Regularized Deep Neural Network
Heart disease is one of the deadly diseases. Timely detection of the disease can prevent mortality. In this paper, an intelligent system is proposed for the diagnosis of heart disease using clinical parameters at early stages. The system is developed using the Regularized Deep Neural Network model (Reg-DNN). Cleveland heart disease dataset has been used for training the model. Regularization has been achieved by using dropout and L2 regularization. Efficiency of Reg-DNN was evaluated by using hold-out validation method.70% data was used for training the model and 30% data was used for testing the model. Results indicate that Reg-DNN provided better performance than conventional DNN. Regularization has helped to overcome overfitting. Reg-DNN has achieved an accuracy of 94.79%. Results achieved are quite promising as compared to existing systems in the literature. Authors developed a system containing a graphical user interface. So, the system can be easily used by anyone to diagnose heart disease using the clinical parameters.
期刊介绍:
The Journal of Applied Research and Technology (JART) is a bimonthly open access journal that publishes papers on innovative applications, development of new technologies and efficient solutions in engineering, computing and scientific research. JART publishes manuscripts describing original research, with significant results based on experimental, theoretical and numerical work.
The journal does not charge for submission, processing, publication of manuscripts or for color reproduction of photographs.
JART classifies research into the following main fields:
-Material Science:
Biomaterials, carbon, ceramics, composite, metals, polymers, thin films, functional materials and semiconductors.
-Computer Science:
Computer graphics and visualization, programming, human-computer interaction, neural networks, image processing and software engineering.
-Industrial Engineering:
Operations research, systems engineering, management science, complex systems and cybernetics applications and information technologies
-Electronic Engineering:
Solid-state physics, radio engineering, telecommunications, control systems, signal processing, power electronics, electronic devices and circuits and automation.
-Instrumentation engineering and science:
Measurement devices (pressure, temperature, flow, voltage, frequency etc.), precision engineering, medical devices, instrumentation for education (devices and software), sensor technology, mechatronics and robotics.