Subham Nath, Rohit Kumar, Shweta Bhargav, Subhojit Das, C. Datta
{"title":"一种新型的希夫碱配体功能化硫化锌纳米复合材料用于重金属检测和光催化染料降解","authors":"Subham Nath, Rohit Kumar, Shweta Bhargav, Subhojit Das, C. Datta","doi":"10.1080/01411594.2023.2225686","DOIUrl":null,"url":null,"abstract":"ABSTRACT Herein, we report the detection and removal/degradation of metal ions and dye species using nanotechnology-based approach. A Schiff base (Sb) ligand has been prepared by a solvent-less method; post which, the ligand is used for functionalizing zinc sulphide nanoparticles (ZnS NPs) in the aqueous medium. The Sb–ZnS NPs proved to be a dual probe, viz., for the detection of Pb2+, Hg2+ and Fe3+ ions, and as a photocatalyst for the degradation of methylene blue (MB) dye. The experiments using the Sb–ZnS NP photocatalyst under daylight illumination revealed higher efficiency with 96% degradation of MB than that in the dark with only 66% degradation of the dye. Further, the degradation of the dye followed first-order rate kinetics with a higher rate constant for light-illuminated sample (16.3 × 10−4 min−1) than the one kept at dark (6.85 × 10−4 min−1). UV–Vis, PL, FT-IR, TEM and powder XRD analyses have been routinely used for the present investigation.","PeriodicalId":19881,"journal":{"name":"Phase Transitions","volume":"96 1","pages":"560 - 570"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel nanocomposite comprising Schiff base ligand functionalized zinc sulphide nanoparticles for heavy metal detection and photocatalytic dye degradation\",\"authors\":\"Subham Nath, Rohit Kumar, Shweta Bhargav, Subhojit Das, C. Datta\",\"doi\":\"10.1080/01411594.2023.2225686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Herein, we report the detection and removal/degradation of metal ions and dye species using nanotechnology-based approach. A Schiff base (Sb) ligand has been prepared by a solvent-less method; post which, the ligand is used for functionalizing zinc sulphide nanoparticles (ZnS NPs) in the aqueous medium. The Sb–ZnS NPs proved to be a dual probe, viz., for the detection of Pb2+, Hg2+ and Fe3+ ions, and as a photocatalyst for the degradation of methylene blue (MB) dye. The experiments using the Sb–ZnS NP photocatalyst under daylight illumination revealed higher efficiency with 96% degradation of MB than that in the dark with only 66% degradation of the dye. Further, the degradation of the dye followed first-order rate kinetics with a higher rate constant for light-illuminated sample (16.3 × 10−4 min−1) than the one kept at dark (6.85 × 10−4 min−1). UV–Vis, PL, FT-IR, TEM and powder XRD analyses have been routinely used for the present investigation.\",\"PeriodicalId\":19881,\"journal\":{\"name\":\"Phase Transitions\",\"volume\":\"96 1\",\"pages\":\"560 - 570\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phase Transitions\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/01411594.2023.2225686\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phase Transitions","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/01411594.2023.2225686","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
A novel nanocomposite comprising Schiff base ligand functionalized zinc sulphide nanoparticles for heavy metal detection and photocatalytic dye degradation
ABSTRACT Herein, we report the detection and removal/degradation of metal ions and dye species using nanotechnology-based approach. A Schiff base (Sb) ligand has been prepared by a solvent-less method; post which, the ligand is used for functionalizing zinc sulphide nanoparticles (ZnS NPs) in the aqueous medium. The Sb–ZnS NPs proved to be a dual probe, viz., for the detection of Pb2+, Hg2+ and Fe3+ ions, and as a photocatalyst for the degradation of methylene blue (MB) dye. The experiments using the Sb–ZnS NP photocatalyst under daylight illumination revealed higher efficiency with 96% degradation of MB than that in the dark with only 66% degradation of the dye. Further, the degradation of the dye followed first-order rate kinetics with a higher rate constant for light-illuminated sample (16.3 × 10−4 min−1) than the one kept at dark (6.85 × 10−4 min−1). UV–Vis, PL, FT-IR, TEM and powder XRD analyses have been routinely used for the present investigation.
期刊介绍:
Phase Transitions is the only journal devoted exclusively to this important subject. It provides a focus for papers on most aspects of phase transitions in condensed matter. Although emphasis is placed primarily on experimental work, theoretical papers are welcome if they have some bearing on experimental results. The areas of interest include:
-structural phase transitions (ferroelectric, ferroelastic, multiferroic, order-disorder, Jahn-Teller, etc.) under a range of external parameters (temperature, pressure, strain, electric/magnetic fields, etc.)
-geophysical phase transitions
-metal-insulator phase transitions
-superconducting and superfluid transitions
-magnetic phase transitions
-critical phenomena and physical properties at phase transitions
-liquid crystals
-technological applications of phase transitions
-quantum phase transitions
Phase Transitions publishes both research papers and invited articles devoted to special topics. Major review papers are particularly welcome. A further emphasis of the journal is the publication of a selected number of small workshops, which are at the forefront of their field.