Yaling Li, Zhiyou Cheng, T. Yip, Xiaobiao Fan, Bing Wu
{"title":"基于HFACS和贝叶斯网络的长江船舶碰撞事故人因和组织因素分析","authors":"Yaling Li, Zhiyou Cheng, T. Yip, Xiaobiao Fan, Bing Wu","doi":"10.1080/03088839.2021.1946609","DOIUrl":null,"url":null,"abstract":"ABSTRACT Human and organizational factors are the contributing factors for collision accidents from the historical data. To discover the key influencing factor, a human factor analysis and classification system based Bayesian Network model is proposed in this paper. The kernel of this proposed model is first to derive the unsafe acts from the perspective of perception, decision-making, and execution failures using the collision avoidance scheme, to classify the human factors into five categories using the modified human-factor analysis and classification system, and to transform the influencing factors of HOFs in the modified HFACS into the graphical structure of the Bayesian network. The results are verified from historical collision accidents data in the Yangtze River, and sensitivity analysis is carried out to validate the axioms of the Bayesian network. From further analysis, the causation factor and global causation chain of ship collision accidents can be derived. Consequently, the results are beneficial for the prevention and control of ship collision accidents in the Yangtze River by reducing human and organization factors.","PeriodicalId":18288,"journal":{"name":"Maritime Policy & Management","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/03088839.2021.1946609","citationCount":"10","resultStr":"{\"title\":\"Use of HFACS and Bayesian network for human and organizational factors analysis of ship collision accidents in the Yangtze River\",\"authors\":\"Yaling Li, Zhiyou Cheng, T. Yip, Xiaobiao Fan, Bing Wu\",\"doi\":\"10.1080/03088839.2021.1946609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Human and organizational factors are the contributing factors for collision accidents from the historical data. To discover the key influencing factor, a human factor analysis and classification system based Bayesian Network model is proposed in this paper. The kernel of this proposed model is first to derive the unsafe acts from the perspective of perception, decision-making, and execution failures using the collision avoidance scheme, to classify the human factors into five categories using the modified human-factor analysis and classification system, and to transform the influencing factors of HOFs in the modified HFACS into the graphical structure of the Bayesian network. The results are verified from historical collision accidents data in the Yangtze River, and sensitivity analysis is carried out to validate the axioms of the Bayesian network. From further analysis, the causation factor and global causation chain of ship collision accidents can be derived. Consequently, the results are beneficial for the prevention and control of ship collision accidents in the Yangtze River by reducing human and organization factors.\",\"PeriodicalId\":18288,\"journal\":{\"name\":\"Maritime Policy & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/03088839.2021.1946609\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maritime Policy & Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/03088839.2021.1946609\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maritime Policy & Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/03088839.2021.1946609","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Use of HFACS and Bayesian network for human and organizational factors analysis of ship collision accidents in the Yangtze River
ABSTRACT Human and organizational factors are the contributing factors for collision accidents from the historical data. To discover the key influencing factor, a human factor analysis and classification system based Bayesian Network model is proposed in this paper. The kernel of this proposed model is first to derive the unsafe acts from the perspective of perception, decision-making, and execution failures using the collision avoidance scheme, to classify the human factors into five categories using the modified human-factor analysis and classification system, and to transform the influencing factors of HOFs in the modified HFACS into the graphical structure of the Bayesian network. The results are verified from historical collision accidents data in the Yangtze River, and sensitivity analysis is carried out to validate the axioms of the Bayesian network. From further analysis, the causation factor and global causation chain of ship collision accidents can be derived. Consequently, the results are beneficial for the prevention and control of ship collision accidents in the Yangtze River by reducing human and organization factors.
期刊介绍:
Thirty years ago maritime management decisions were taken on the basis of experience and hunch. Today, the experience is augmented by expert analysis and informed by research findings. Maritime Policy & Management provides the latest findings and analyses, and the opportunity for exchanging views through its Comment Section. A multi-disciplinary and international refereed journal, it brings together papers on the different topics that concern the maritime industry. Emphasis is placed on business, organizational, economic, sociolegal and management topics at port, community, shipping company and shipboard levels. The Journal also provides details of conferences and book reviews.