C. A. Senalik, F. França, R. D. Seale, R. Ross, R. Shmulsky
{"title":"用声学技术估算木材特性第1部分:透明木材和木材的声学(应力)波行为建模","authors":"C. A. Senalik, F. França, R. D. Seale, R. Ross, R. Shmulsky","doi":"10.22382/wfs-2020-036","DOIUrl":null,"url":null,"abstract":"This research article summarizes results from Part 1 of a study designed to examine using advanced signal processing techniques with acoustic-based lumber assessment technologies to evaluate the MOE, ultimate tension stress (UTS), and MOR of structural lumber. In Part 1 of this research article, a mathematical model of acoustic wave behavior in an idealized specimen is derived using fundamental mechanics. Published information on the physical and mechanical properties of clear, defect-free wood is input into the model to examine acoustic wave behavior. Wave behavior is then examined experimentally in a series of wood specimens. Observed wave behavior in the clear wood specimens, in both time and frequency domains, closely resembles idealized wave behavior. In Part 2 of this research article, predictions from the model are used to improve estimation of the UTS of wood specimens.","PeriodicalId":23620,"journal":{"name":"Wood and Fiber Science","volume":"52 1","pages":"380-389"},"PeriodicalIF":0.8000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Estimating lumber properties with acoustic-based technologies—Part 1: Modeling acoustic (stress) wave behavior in clear wood and lumber\",\"authors\":\"C. A. Senalik, F. França, R. D. Seale, R. Ross, R. Shmulsky\",\"doi\":\"10.22382/wfs-2020-036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research article summarizes results from Part 1 of a study designed to examine using advanced signal processing techniques with acoustic-based lumber assessment technologies to evaluate the MOE, ultimate tension stress (UTS), and MOR of structural lumber. In Part 1 of this research article, a mathematical model of acoustic wave behavior in an idealized specimen is derived using fundamental mechanics. Published information on the physical and mechanical properties of clear, defect-free wood is input into the model to examine acoustic wave behavior. Wave behavior is then examined experimentally in a series of wood specimens. Observed wave behavior in the clear wood specimens, in both time and frequency domains, closely resembles idealized wave behavior. In Part 2 of this research article, predictions from the model are used to improve estimation of the UTS of wood specimens.\",\"PeriodicalId\":23620,\"journal\":{\"name\":\"Wood and Fiber Science\",\"volume\":\"52 1\",\"pages\":\"380-389\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood and Fiber Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.22382/wfs-2020-036\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood and Fiber Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.22382/wfs-2020-036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
Estimating lumber properties with acoustic-based technologies—Part 1: Modeling acoustic (stress) wave behavior in clear wood and lumber
This research article summarizes results from Part 1 of a study designed to examine using advanced signal processing techniques with acoustic-based lumber assessment technologies to evaluate the MOE, ultimate tension stress (UTS), and MOR of structural lumber. In Part 1 of this research article, a mathematical model of acoustic wave behavior in an idealized specimen is derived using fundamental mechanics. Published information on the physical and mechanical properties of clear, defect-free wood is input into the model to examine acoustic wave behavior. Wave behavior is then examined experimentally in a series of wood specimens. Observed wave behavior in the clear wood specimens, in both time and frequency domains, closely resembles idealized wave behavior. In Part 2 of this research article, predictions from the model are used to improve estimation of the UTS of wood specimens.
期刊介绍:
W&FS SCIENTIFIC ARTICLES INCLUDE THESE TOPIC AREAS:
-Wood and Lignocellulosic Materials-
Biomaterials-
Timber Structures and Engineering-
Biology-
Nano-technology-
Natural Fiber Composites-
Timber Treatment and Harvesting-
Botany-
Mycology-
Adhesives and Bioresins-
Business Management and Marketing-
Operations Research.
SWST members have access to all full-text electronic versions of current and past Wood and Fiber Science issues.