不适定问题和共轭梯度法:存在离散化和建模误差时的最优收敛速度

IF 0.9 4区 数学 Q2 MATHEMATICS
A. Neubauer
{"title":"不适定问题和共轭梯度法:存在离散化和建模误差时的最优收敛速度","authors":"A. Neubauer","doi":"10.1515/jiip-2022-0039","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we prove order-optimal convergence rates for the conjugate gradient method applied to linear ill-posed problems when not only the data are noisy but also when the operator is perturbed via discretization and modelling errors.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"30 1","pages":"905 - 915"},"PeriodicalIF":0.9000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ill-posed problems and the conjugate gradient method: Optimal convergence rates in the presence of discretization and modelling errors\",\"authors\":\"A. Neubauer\",\"doi\":\"10.1515/jiip-2022-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we prove order-optimal convergence rates for the conjugate gradient method applied to linear ill-posed problems when not only the data are noisy but also when the operator is perturbed via discretization and modelling errors.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"30 1\",\"pages\":\"905 - 915\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2022-0039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2022-0039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,我们证明了共轭梯度法应用于线性不适定问题的阶最优收敛速度,不仅当数据有噪声时,而且当算子受到离散化和建模误差的扰动时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ill-posed problems and the conjugate gradient method: Optimal convergence rates in the presence of discretization and modelling errors
Abstract In this paper, we prove order-optimal convergence rates for the conjugate gradient method applied to linear ill-posed problems when not only the data are noisy but also when the operator is perturbed via discretization and modelling errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inverse and Ill-Posed Problems
Journal of Inverse and Ill-Posed Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published. Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest. The following topics are covered: Inverse problems existence and uniqueness theorems stability estimates optimization and identification problems numerical methods Ill-posed problems regularization theory operator equations integral geometry Applications inverse problems in geophysics, electrodynamics and acoustics inverse problems in ecology inverse and ill-posed problems in medicine mathematical problems of tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信