Yasmina Kadri, H. Benseridi, M. Dilmi, Aissa Benseghir
{"title":"薄域非线性摩擦等温弹性算子的行为","authors":"Yasmina Kadri, H. Benseridi, M. Dilmi, Aissa Benseghir","doi":"10.5269/bspm.51676","DOIUrl":null,"url":null,"abstract":"This paper deals with the asymptotic behavior of a boundary value problem in a three dimensional thin domain Ω ε with non-linear friction of Coulomb type. We will establish a variational formulation for the problem and prove the existence and uniqueness of the weak solution. We then study the asymptotic behavior when one dimension of the domain tends to zero. In which case, the uniqueness result of the displacement for the limit problem is also proved.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of the isothermal Elasticity operator with non-linear friction in a thin domain\",\"authors\":\"Yasmina Kadri, H. Benseridi, M. Dilmi, Aissa Benseghir\",\"doi\":\"10.5269/bspm.51676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the asymptotic behavior of a boundary value problem in a three dimensional thin domain Ω ε with non-linear friction of Coulomb type. We will establish a variational formulation for the problem and prove the existence and uniqueness of the weak solution. We then study the asymptotic behavior when one dimension of the domain tends to zero. In which case, the uniqueness result of the displacement for the limit problem is also proved.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.51676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.51676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Behavior of the isothermal Elasticity operator with non-linear friction in a thin domain
This paper deals with the asymptotic behavior of a boundary value problem in a three dimensional thin domain Ω ε with non-linear friction of Coulomb type. We will establish a variational formulation for the problem and prove the existence and uniqueness of the weak solution. We then study the asymptotic behavior when one dimension of the domain tends to zero. In which case, the uniqueness result of the displacement for the limit problem is also proved.