薄域非线性摩擦等温弹性算子的行为

IF 0.4 Q4 MATHEMATICS
Yasmina Kadri, H. Benseridi, M. Dilmi, Aissa Benseghir
{"title":"薄域非线性摩擦等温弹性算子的行为","authors":"Yasmina Kadri, H. Benseridi, M. Dilmi, Aissa Benseghir","doi":"10.5269/bspm.51676","DOIUrl":null,"url":null,"abstract":"This paper deals with the asymptotic behavior of a boundary value problem in a three dimensional thin domain Ω ε with non-linear friction of Coulomb type. We will establish a variational formulation for the problem and prove the existence and uniqueness of the weak solution. We then study the asymptotic behavior when one dimension of the domain tends to zero. In which case, the uniqueness result of the displacement for the limit problem is also proved.","PeriodicalId":44941,"journal":{"name":"Boletim Sociedade Paranaense de Matematica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of the isothermal Elasticity operator with non-linear friction in a thin domain\",\"authors\":\"Yasmina Kadri, H. Benseridi, M. Dilmi, Aissa Benseghir\",\"doi\":\"10.5269/bspm.51676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the asymptotic behavior of a boundary value problem in a three dimensional thin domain Ω ε with non-linear friction of Coulomb type. We will establish a variational formulation for the problem and prove the existence and uniqueness of the weak solution. We then study the asymptotic behavior when one dimension of the domain tends to zero. In which case, the uniqueness result of the displacement for the limit problem is also proved.\",\"PeriodicalId\":44941,\"journal\":{\"name\":\"Boletim Sociedade Paranaense de Matematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim Sociedade Paranaense de Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5269/bspm.51676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim Sociedade Paranaense de Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.51676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有库仑型非线性摩擦的三维薄域Ω ε边值问题的渐近性质。我们将建立问题的变分公式,并证明弱解的存在唯一性。在此基础上,研究了定义域一维趋近于零时的渐近行为。在这种情况下,也证明了极限问题位移的唯一性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior of the isothermal Elasticity operator with non-linear friction in a thin domain
This paper deals with the asymptotic behavior of a boundary value problem in a three dimensional thin domain Ω ε with non-linear friction of Coulomb type. We will establish a variational formulation for the problem and prove the existence and uniqueness of the weak solution. We then study the asymptotic behavior when one dimension of the domain tends to zero. In which case, the uniqueness result of the displacement for the limit problem is also proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
140
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信