$$p^\infty$$-CM椭圆曲线上的Selmer群和有理点

IF 0.5 Q3 MATHEMATICS
Ashay Burungale, Francesc Castella, Christopher Skinner, Ye Tian
{"title":"$$p^\\infty$$-CM椭圆曲线上的Selmer群和有理点","authors":"Ashay Burungale,&nbsp;Francesc Castella,&nbsp;Christopher Skinner,&nbsp;Ye Tian","doi":"10.1007/s40316-022-00203-y","DOIUrl":null,"url":null,"abstract":"<div><h2>R\\'esum\\'e</h2><div><p>Let <span>\\(E/{\\mathbb {Q}}\\)</span> be a CM elliptic curve and <i>p</i> a prime of good ordinary reduction for <i>E</i>. We show that if <span>\\(\\text {Sel}_{p^\\infty }(E/{\\mathbb {Q}})\\)</span> has <span>\\({\\mathbb {Z}}_p\\)</span>-corank one, then <span>\\(E({\\mathbb {Q}})\\)</span> has a point of infinite order. The non-torsion point arises from a Heegner point, and thus <span>\\({{\\,\\mathrm{ord}\\,}}_{s=1}L(E,s)=1\\)</span>, yielding a <i>p</i>-converse to a theorem of Gross–Zagier, Kolyvagin, and Rubin in the spirit of [49, 54]. For <span>\\(p&gt;3\\)</span>, this gives a new proof of the main result of [12], which our approach extends to all primes. The approach generalizes to CM elliptic curves over totally real fields [4].</p></div></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"46 2","pages":"325 - 346"},"PeriodicalIF":0.5000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40316-022-00203-y.pdf","citationCount":"3","resultStr":"{\"title\":\"\\\\(p^\\\\infty \\\\)-Selmer groups and rational points on CM elliptic curves\",\"authors\":\"Ashay Burungale,&nbsp;Francesc Castella,&nbsp;Christopher Skinner,&nbsp;Ye Tian\",\"doi\":\"10.1007/s40316-022-00203-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>R\\\\'esum\\\\'e</h2><div><p>Let <span>\\\\(E/{\\\\mathbb {Q}}\\\\)</span> be a CM elliptic curve and <i>p</i> a prime of good ordinary reduction for <i>E</i>. We show that if <span>\\\\(\\\\text {Sel}_{p^\\\\infty }(E/{\\\\mathbb {Q}})\\\\)</span> has <span>\\\\({\\\\mathbb {Z}}_p\\\\)</span>-corank one, then <span>\\\\(E({\\\\mathbb {Q}})\\\\)</span> has a point of infinite order. The non-torsion point arises from a Heegner point, and thus <span>\\\\({{\\\\,\\\\mathrm{ord}\\\\,}}_{s=1}L(E,s)=1\\\\)</span>, yielding a <i>p</i>-converse to a theorem of Gross–Zagier, Kolyvagin, and Rubin in the spirit of [49, 54]. For <span>\\\\(p&gt;3\\\\)</span>, this gives a new proof of the main result of [12], which our approach extends to all primes. The approach generalizes to CM elliptic curves over totally real fields [4].</p></div></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"46 2\",\"pages\":\"325 - 346\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40316-022-00203-y.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-022-00203-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-022-00203-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

设(E/{\mathbb{Q}})是一条CM椭圆曲线,p是E的一个良常约简素数{Sel}_{p^\infty}(E/{\mathbb{Q}})\)具有\({\math bb{Z})_p\)-corank 1,则\(E({\ mathbb{Q})\)有一个无穷阶点。非扭转点源于Heegner点,因此\({{\,\mathrm{ord}\,}}_{s=1}L(E,s)=1\),根据[49,54]的精神,与Gross–Zagier、Kolyvagin和Rubin的定理产生p逆。对于\(p>;3\),这给出了[12]的主要结果的一个新的证明,我们的方法将其扩展到所有素数。该方法推广到全实域上的CM椭圆曲线[4]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
\(p^\infty \)-Selmer groups and rational points on CM elliptic curves

R\'esum\'e

Let \(E/{\mathbb {Q}}\) be a CM elliptic curve and p a prime of good ordinary reduction for E. We show that if \(\text {Sel}_{p^\infty }(E/{\mathbb {Q}})\) has \({\mathbb {Z}}_p\)-corank one, then \(E({\mathbb {Q}})\) has a point of infinite order. The non-torsion point arises from a Heegner point, and thus \({{\,\mathrm{ord}\,}}_{s=1}L(E,s)=1\), yielding a p-converse to a theorem of Gross–Zagier, Kolyvagin, and Rubin in the spirit of [49, 54]. For \(p>3\), this gives a new proof of the main result of [12], which our approach extends to all primes. The approach generalizes to CM elliptic curves over totally real fields [4].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信