{"title":"关于有限谱的等距","authors":"F. Botelho, D. Ilišević","doi":"10.7900/jot.2020apr11.2270","DOIUrl":null,"url":null,"abstract":"In this paper we investigate inverse eigenvalue problems for finite spectrum linear isometries on complex Banach spaces. We establish necessary conditions on a finite set of modulus one complex numbers to be the spectrum of a linear isometry. In particular, we study periodic linear isometries on the large class of Banach spaces X with the following property: if T:X→X is a linear isometry with two-point spectrum {1,λ} then λ=−1 or the eigenprojections of T are Hermitian.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On isometries with finite spectrum\",\"authors\":\"F. Botelho, D. Ilišević\",\"doi\":\"10.7900/jot.2020apr11.2270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate inverse eigenvalue problems for finite spectrum linear isometries on complex Banach spaces. We establish necessary conditions on a finite set of modulus one complex numbers to be the spectrum of a linear isometry. In particular, we study periodic linear isometries on the large class of Banach spaces X with the following property: if T:X→X is a linear isometry with two-point spectrum {1,λ} then λ=−1 or the eigenprojections of T are Hermitian.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2020apr11.2270\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020apr11.2270","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper we investigate inverse eigenvalue problems for finite spectrum linear isometries on complex Banach spaces. We establish necessary conditions on a finite set of modulus one complex numbers to be the spectrum of a linear isometry. In particular, we study periodic linear isometries on the large class of Banach spaces X with the following property: if T:X→X is a linear isometry with two-point spectrum {1,λ} then λ=−1 or the eigenprojections of T are Hermitian.
期刊介绍:
The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.