关于有限谱的等距

IF 0.7 4区 数学 Q2 MATHEMATICS
F. Botelho, D. Ilišević
{"title":"关于有限谱的等距","authors":"F. Botelho, D. Ilišević","doi":"10.7900/jot.2020apr11.2270","DOIUrl":null,"url":null,"abstract":"In this paper we investigate inverse eigenvalue problems for finite spectrum linear isometries on complex Banach spaces. We establish necessary conditions on a finite set of modulus one complex numbers to be the spectrum of a linear isometry. In particular, we study periodic linear isometries on the large class of Banach spaces X with the following property: if T:X→X is a linear isometry with two-point spectrum {1,λ} then λ=−1 or the eigenprojections of T are Hermitian.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On isometries with finite spectrum\",\"authors\":\"F. Botelho, D. Ilišević\",\"doi\":\"10.7900/jot.2020apr11.2270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate inverse eigenvalue problems for finite spectrum linear isometries on complex Banach spaces. We establish necessary conditions on a finite set of modulus one complex numbers to be the spectrum of a linear isometry. In particular, we study periodic linear isometries on the large class of Banach spaces X with the following property: if T:X→X is a linear isometry with two-point spectrum {1,λ} then λ=−1 or the eigenprojections of T are Hermitian.\",\"PeriodicalId\":50104,\"journal\":{\"name\":\"Journal of Operator Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7900/jot.2020apr11.2270\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2020apr11.2270","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了复Banach空间上有限谱线性等距的特征值反问题。我们建立了一模复数的有限集合是线性等距谱的必要条件。特别地,我们研究了Banach空间X上的周期线性等距,其性质如下:如果T:X→X是两点谱{1,λ}的线性等距,则λ= - 1或T的本征投影是厄米的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On isometries with finite spectrum
In this paper we investigate inverse eigenvalue problems for finite spectrum linear isometries on complex Banach spaces. We establish necessary conditions on a finite set of modulus one complex numbers to be the spectrum of a linear isometry. In particular, we study periodic linear isometries on the large class of Banach spaces X with the following property: if T:X→X is a linear isometry with two-point spectrum {1,λ} then λ=−1 or the eigenprojections of T are Hermitian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信