M. Elbes, Tarek Kanan, Mohammad Alia, Mohammad Ziad
{"title":"使用深度学习从X射线图像中检测新冠肺炎的平台","authors":"M. Elbes, Tarek Kanan, Mohammad Alia, Mohammad Ziad","doi":"10.15849/ijasca.220328.13","DOIUrl":null,"url":null,"abstract":"Abstract Since the early days of 2020, COVID-19 has tragic effects on the lives of human beings all over the world. To combat this disease, it is important to survey the infected patients in an inexpensive and fast way. One of the most common ways of achieving this is by performing radiological testing using chest X-Rays and patient coughing sounds. In this work, we propose a Convolutional Neural Network-based solution which is able to identify the positive COVID-19 patients using chest XRay images. Multiple CNN models have been adopted in our work. Each of these models provides a decision whether the patient is affected with COVID-19 or not. Then, a weighted average selection technique is used to provide the final decision. To test the efficiency of our model we have used publicly available chest X-ray images of COVID positive and negative cases. Our approach provided a classification performance of 88.5%. Keywords: COVID-19, CT-Images, Deep Learning, CNN Algorithm.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COVD-19 Detection Platform from X-ray Images using Deep Learning\",\"authors\":\"M. Elbes, Tarek Kanan, Mohammad Alia, Mohammad Ziad\",\"doi\":\"10.15849/ijasca.220328.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Since the early days of 2020, COVID-19 has tragic effects on the lives of human beings all over the world. To combat this disease, it is important to survey the infected patients in an inexpensive and fast way. One of the most common ways of achieving this is by performing radiological testing using chest X-Rays and patient coughing sounds. In this work, we propose a Convolutional Neural Network-based solution which is able to identify the positive COVID-19 patients using chest XRay images. Multiple CNN models have been adopted in our work. Each of these models provides a decision whether the patient is affected with COVID-19 or not. Then, a weighted average selection technique is used to provide the final decision. To test the efficiency of our model we have used publicly available chest X-ray images of COVID positive and negative cases. Our approach provided a classification performance of 88.5%. Keywords: COVID-19, CT-Images, Deep Learning, CNN Algorithm.\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.220328.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.220328.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
COVD-19 Detection Platform from X-ray Images using Deep Learning
Abstract Since the early days of 2020, COVID-19 has tragic effects on the lives of human beings all over the world. To combat this disease, it is important to survey the infected patients in an inexpensive and fast way. One of the most common ways of achieving this is by performing radiological testing using chest X-Rays and patient coughing sounds. In this work, we propose a Convolutional Neural Network-based solution which is able to identify the positive COVID-19 patients using chest XRay images. Multiple CNN models have been adopted in our work. Each of these models provides a decision whether the patient is affected with COVID-19 or not. Then, a weighted average selection technique is used to provide the final decision. To test the efficiency of our model we have used publicly available chest X-ray images of COVID positive and negative cases. Our approach provided a classification performance of 88.5%. Keywords: COVID-19, CT-Images, Deep Learning, CNN Algorithm.
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.