细菌纳米纤维素作为增强材料在衬纸中的应用

Daisy A Sriwedari, Edwin K Sijabat
{"title":"细菌纳米纤维素作为增强材料在衬纸中的应用","authors":"Daisy A Sriwedari, Edwin K Sijabat","doi":"10.15294/JBAT.V9I02.26812","DOIUrl":null,"url":null,"abstract":"This research is about the application of Bacterial nano cellulose (BNC) as a reinforcing material in the making of liner test paper. BNC was obtained from the fermentation of banana peel extract using Gluconacetobacter xylinum bacteria obtained from the making starter of nata de coco. The reason for using banana peel waste is because it’s available in large number all across Indonesia. BNC is mixed with secondary fiber as a raw material for making liner test paper. From the experimental handsheets results, strength properties and absorption properties were then tested. Variations in the composition of the use of BNC are 0% (blank), 5%, 10%, 15%, 20%, 25%, 30% of the handsheet dry weight. The BNC is also applicated on surface sizing as a substitute for the surface sizing agent. The results of this study indicate that BNC can be used as an alternative raw material on wet end and on surface sizing, because both applications can increase the strength properties of liner test paper, and can reduce the use of chemical additive. The highest increase in strength properties of liner test paper was obtained at the composition of nano cellulose 30% and using surface sizing. Ring crush index is 14.02 Nm / g, concora index is 12.73 Nm / g, bursting index is 3.78 KPa.m² / g, ply bonding is 388.57 J / m². The absorption properties of paper increases but it has a low prosity. The highest cobb size results are obtained at 30% BNC composition, which is 45.30 g / m2 without using surface sizing and 41.83 g / m² using surface sizing. The highest porosity value is obtained at 30% BNC composition, which is 158 s / 100cc using surface sizing. This research is expected to be a reference for further research in the field of BNC, as the alternative raw materials besides wood in paper making.","PeriodicalId":17764,"journal":{"name":"Jurnal Bahan Alam Terbarukan","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Bacterial Nano Cellulose as a Reinforcing Material in The Liner Test Paper\",\"authors\":\"Daisy A Sriwedari, Edwin K Sijabat\",\"doi\":\"10.15294/JBAT.V9I02.26812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research is about the application of Bacterial nano cellulose (BNC) as a reinforcing material in the making of liner test paper. BNC was obtained from the fermentation of banana peel extract using Gluconacetobacter xylinum bacteria obtained from the making starter of nata de coco. The reason for using banana peel waste is because it’s available in large number all across Indonesia. BNC is mixed with secondary fiber as a raw material for making liner test paper. From the experimental handsheets results, strength properties and absorption properties were then tested. Variations in the composition of the use of BNC are 0% (blank), 5%, 10%, 15%, 20%, 25%, 30% of the handsheet dry weight. The BNC is also applicated on surface sizing as a substitute for the surface sizing agent. The results of this study indicate that BNC can be used as an alternative raw material on wet end and on surface sizing, because both applications can increase the strength properties of liner test paper, and can reduce the use of chemical additive. The highest increase in strength properties of liner test paper was obtained at the composition of nano cellulose 30% and using surface sizing. Ring crush index is 14.02 Nm / g, concora index is 12.73 Nm / g, bursting index is 3.78 KPa.m² / g, ply bonding is 388.57 J / m². The absorption properties of paper increases but it has a low prosity. The highest cobb size results are obtained at 30% BNC composition, which is 45.30 g / m2 without using surface sizing and 41.83 g / m² using surface sizing. The highest porosity value is obtained at 30% BNC composition, which is 158 s / 100cc using surface sizing. This research is expected to be a reference for further research in the field of BNC, as the alternative raw materials besides wood in paper making.\",\"PeriodicalId\":17764,\"journal\":{\"name\":\"Jurnal Bahan Alam Terbarukan\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Bahan Alam Terbarukan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15294/JBAT.V9I02.26812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Bahan Alam Terbarukan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/JBAT.V9I02.26812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究是关于细菌纳米纤维素(BNC)作为增强材料在内衬测试纸制作中的应用。香蕉皮提取物经木糖醋杆菌发酵制得BNC。使用香蕉皮废料的原因是™它在印度尼西亚各地都有大量供应。将BNC与二次纤维混合作为制作衬纸的原料。根据实验手板的结果,测试了强度性能和吸收性能。使用BNC的组成的变化为手片干重的0%(空白)、5%、10%、15%、20%、25%、30%。BNC也可作为表面施胶剂的替代品应用于表面施胶。这项研究的结果表明,BNC可以作为湿端和表面施胶的替代原料,因为这两种应用都可以提高衬纸的强度性能,并可以减少化学添加剂的使用。当纳米纤维素的组成为30%并使用表面施胶时,衬纸的强度性能得到了最高的提高。环压指数为14.02牛米/克,康科拉指数为12.73牛米/克、爆裂指数为3.78千帕·平方米/克,层间粘合为388.57焦耳/平方米。纸的吸收性能提高了,但它具有较低的平展性。在30%的BNC成分下获得了最高的cobb尺寸结果,在不使用表面施胶的情况下为45.30 g/m2,在使用表面施药的情况下是41.83 g/m2。在30%的BNC成分下获得最高的孔隙率值,使用表面施胶为158s/100cc。作为造纸中除木材外的替代原料,本研究有望为BNC领域的进一步研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Bacterial Nano Cellulose as a Reinforcing Material in The Liner Test Paper
This research is about the application of Bacterial nano cellulose (BNC) as a reinforcing material in the making of liner test paper. BNC was obtained from the fermentation of banana peel extract using Gluconacetobacter xylinum bacteria obtained from the making starter of nata de coco. The reason for using banana peel waste is because it’s available in large number all across Indonesia. BNC is mixed with secondary fiber as a raw material for making liner test paper. From the experimental handsheets results, strength properties and absorption properties were then tested. Variations in the composition of the use of BNC are 0% (blank), 5%, 10%, 15%, 20%, 25%, 30% of the handsheet dry weight. The BNC is also applicated on surface sizing as a substitute for the surface sizing agent. The results of this study indicate that BNC can be used as an alternative raw material on wet end and on surface sizing, because both applications can increase the strength properties of liner test paper, and can reduce the use of chemical additive. The highest increase in strength properties of liner test paper was obtained at the composition of nano cellulose 30% and using surface sizing. Ring crush index is 14.02 Nm / g, concora index is 12.73 Nm / g, bursting index is 3.78 KPa.m² / g, ply bonding is 388.57 J / m². The absorption properties of paper increases but it has a low prosity. The highest cobb size results are obtained at 30% BNC composition, which is 45.30 g / m2 without using surface sizing and 41.83 g / m² using surface sizing. The highest porosity value is obtained at 30% BNC composition, which is 158 s / 100cc using surface sizing. This research is expected to be a reference for further research in the field of BNC, as the alternative raw materials besides wood in paper making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信