{"title":"基于生成对抗网络的泛化山路地图图像提取","authors":"A. Courtial, G. Touya, X. Zhang","doi":"10.1080/13658816.2022.2123488","DOIUrl":null,"url":null,"abstract":"Abstract Map generalisation is a process that transforms geographic information for a cartographic at a specific scale. The goal is to produce legible and informative maps even at small scales from a detailed dataset. The potential of deep learning to help in this task is still unknown. This article examines the use case of mountain road generalisation, to explore the potential of a specific deep learning approach: generative adversarial networks (GAN). Our goal is to generate images that depict road maps generalised at the 1:250k scale, from images that depict road maps of the same area using un-generalised 1:25k data. This paper not only shows the potential of deep learning to generate generalised mountain roads, but also analyses how the process of deep learning generalisation works, compares supervised and unsupervised learning and explores possible improvements. With this experiment we have exhibited an unsupervised model that is able to generate generalised maps evaluated as good as the reference and reviewed some possible improvements for deep learning-based generalisation, including training set management and the definition of a new road connectivity loss. All our results are evaluated visually using a four questions process and validated by a user test conducted on 113 individuals.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"499 - 528"},"PeriodicalIF":4.3000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Deriving map images of generalised mountain roads with generative adversarial networks\",\"authors\":\"A. Courtial, G. Touya, X. Zhang\",\"doi\":\"10.1080/13658816.2022.2123488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Map generalisation is a process that transforms geographic information for a cartographic at a specific scale. The goal is to produce legible and informative maps even at small scales from a detailed dataset. The potential of deep learning to help in this task is still unknown. This article examines the use case of mountain road generalisation, to explore the potential of a specific deep learning approach: generative adversarial networks (GAN). Our goal is to generate images that depict road maps generalised at the 1:250k scale, from images that depict road maps of the same area using un-generalised 1:25k data. This paper not only shows the potential of deep learning to generate generalised mountain roads, but also analyses how the process of deep learning generalisation works, compares supervised and unsupervised learning and explores possible improvements. With this experiment we have exhibited an unsupervised model that is able to generate generalised maps evaluated as good as the reference and reviewed some possible improvements for deep learning-based generalisation, including training set management and the definition of a new road connectivity loss. All our results are evaluated visually using a four questions process and validated by a user test conducted on 113 individuals.\",\"PeriodicalId\":14162,\"journal\":{\"name\":\"International Journal of Geographical Information Science\",\"volume\":\"37 1\",\"pages\":\"499 - 528\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geographical Information Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/13658816.2022.2123488\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2022.2123488","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Deriving map images of generalised mountain roads with generative adversarial networks
Abstract Map generalisation is a process that transforms geographic information for a cartographic at a specific scale. The goal is to produce legible and informative maps even at small scales from a detailed dataset. The potential of deep learning to help in this task is still unknown. This article examines the use case of mountain road generalisation, to explore the potential of a specific deep learning approach: generative adversarial networks (GAN). Our goal is to generate images that depict road maps generalised at the 1:250k scale, from images that depict road maps of the same area using un-generalised 1:25k data. This paper not only shows the potential of deep learning to generate generalised mountain roads, but also analyses how the process of deep learning generalisation works, compares supervised and unsupervised learning and explores possible improvements. With this experiment we have exhibited an unsupervised model that is able to generate generalised maps evaluated as good as the reference and reviewed some possible improvements for deep learning-based generalisation, including training set management and the definition of a new road connectivity loss. All our results are evaluated visually using a four questions process and validated by a user test conducted on 113 individuals.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.