基于多维信息的旅游酒店智能推荐:一种深度神经网络模型

IF 4.4 4区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Huosong Xia, Wuyue An, Genwang Liu, Runjiu Hu, Z. Zhang, Yuan Wang
{"title":"基于多维信息的旅游酒店智能推荐:一种深度神经网络模型","authors":"Huosong Xia, Wuyue An, Genwang Liu, Runjiu Hu, Z. Zhang, Yuan Wang","doi":"10.1080/17517575.2021.1959651","DOIUrl":null,"url":null,"abstract":"ABSTRACT Most hotel recommendation systems currently rely on text-based information or meta-data. We develop a deep network recommendation model with three modalities – picture, review, and scoring .We propose a unifified deep neural network including an embedding layer, pooling layer, and fully connected layer. Comparing with other algorithms, we verify its efficacy in improving travel recommendations based on the hotel data crawled from Ctrip and the major evaluation indicators. Our study contributes to the literature by building a knowledge model for tourist hotels based on the analysis of user-generated data and providing practical guidance for hotel managers and users.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17517575.2021.1959651","citationCount":"5","resultStr":"{\"title\":\"Smart recommendation for tourist hotels based on multidimensional information: a deep neural network model\",\"authors\":\"Huosong Xia, Wuyue An, Genwang Liu, Runjiu Hu, Z. Zhang, Yuan Wang\",\"doi\":\"10.1080/17517575.2021.1959651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Most hotel recommendation systems currently rely on text-based information or meta-data. We develop a deep network recommendation model with three modalities – picture, review, and scoring .We propose a unifified deep neural network including an embedding layer, pooling layer, and fully connected layer. Comparing with other algorithms, we verify its efficacy in improving travel recommendations based on the hotel data crawled from Ctrip and the major evaluation indicators. Our study contributes to the literature by building a knowledge model for tourist hotels based on the analysis of user-generated data and providing practical guidance for hotel managers and users.\",\"PeriodicalId\":11750,\"journal\":{\"name\":\"Enterprise Information Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17517575.2021.1959651\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enterprise Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/17517575.2021.1959651\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2021.1959651","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

摘要

摘要目前,大多数酒店推荐系统都依赖于基于文本的信息或元数据。我们开发了一个具有三种模式的深度网络推荐模型——图片、评论和评分。我们提出了一个统一的深度神经网络,包括嵌入层、池化层和全连接层。与其他算法相比,我们基于携程酒店数据和主要评价指标验证了其在改善旅行推荐方面的有效性。我们的研究在分析用户生成数据的基础上建立了旅游酒店的知识模型,并为酒店管理者和用户提供了实践指导,从而为文献做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart recommendation for tourist hotels based on multidimensional information: a deep neural network model
ABSTRACT Most hotel recommendation systems currently rely on text-based information or meta-data. We develop a deep network recommendation model with three modalities – picture, review, and scoring .We propose a unifified deep neural network including an embedding layer, pooling layer, and fully connected layer. Comparing with other algorithms, we verify its efficacy in improving travel recommendations based on the hotel data crawled from Ctrip and the major evaluation indicators. Our study contributes to the literature by building a knowledge model for tourist hotels based on the analysis of user-generated data and providing practical guidance for hotel managers and users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Enterprise Information Systems
Enterprise Information Systems 工程技术-计算机:信息系统
CiteScore
11.00
自引率
6.80%
发文量
24
审稿时长
6 months
期刊介绍: Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信