Huosong Xia, Wuyue An, Genwang Liu, Runjiu Hu, Z. Zhang, Yuan Wang
{"title":"基于多维信息的旅游酒店智能推荐:一种深度神经网络模型","authors":"Huosong Xia, Wuyue An, Genwang Liu, Runjiu Hu, Z. Zhang, Yuan Wang","doi":"10.1080/17517575.2021.1959651","DOIUrl":null,"url":null,"abstract":"ABSTRACT Most hotel recommendation systems currently rely on text-based information or meta-data. We develop a deep network recommendation model with three modalities – picture, review, and scoring .We propose a unifified deep neural network including an embedding layer, pooling layer, and fully connected layer. Comparing with other algorithms, we verify its efficacy in improving travel recommendations based on the hotel data crawled from Ctrip and the major evaluation indicators. Our study contributes to the literature by building a knowledge model for tourist hotels based on the analysis of user-generated data and providing practical guidance for hotel managers and users.","PeriodicalId":11750,"journal":{"name":"Enterprise Information Systems","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17517575.2021.1959651","citationCount":"5","resultStr":"{\"title\":\"Smart recommendation for tourist hotels based on multidimensional information: a deep neural network model\",\"authors\":\"Huosong Xia, Wuyue An, Genwang Liu, Runjiu Hu, Z. Zhang, Yuan Wang\",\"doi\":\"10.1080/17517575.2021.1959651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Most hotel recommendation systems currently rely on text-based information or meta-data. We develop a deep network recommendation model with three modalities – picture, review, and scoring .We propose a unifified deep neural network including an embedding layer, pooling layer, and fully connected layer. Comparing with other algorithms, we verify its efficacy in improving travel recommendations based on the hotel data crawled from Ctrip and the major evaluation indicators. Our study contributes to the literature by building a knowledge model for tourist hotels based on the analysis of user-generated data and providing practical guidance for hotel managers and users.\",\"PeriodicalId\":11750,\"journal\":{\"name\":\"Enterprise Information Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17517575.2021.1959651\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enterprise Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/17517575.2021.1959651\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enterprise Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/17517575.2021.1959651","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Smart recommendation for tourist hotels based on multidimensional information: a deep neural network model
ABSTRACT Most hotel recommendation systems currently rely on text-based information or meta-data. We develop a deep network recommendation model with three modalities – picture, review, and scoring .We propose a unifified deep neural network including an embedding layer, pooling layer, and fully connected layer. Comparing with other algorithms, we verify its efficacy in improving travel recommendations based on the hotel data crawled from Ctrip and the major evaluation indicators. Our study contributes to the literature by building a knowledge model for tourist hotels based on the analysis of user-generated data and providing practical guidance for hotel managers and users.
期刊介绍:
Enterprise Information Systems (EIS) focusses on both the technical and applications aspects of EIS technology, and the complex and cross-disciplinary problems of enterprise integration that arise in integrating extended enterprises in a contemporary global supply chain environment. Techniques developed in mathematical science, computer science, manufacturing engineering, and operations management used in the design or operation of EIS will also be considered.