{"title":"台球分散的热力学形式","authors":"V. Baladi, Mark F. Demers","doi":"10.3934/jmd.2022013","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>For any finite horizon Sinai billiard map <inline-formula><tex-math id=\"M1\">\\begin{document}$ T $\\end{document}</tex-math></inline-formula> on the two-torus, we find <inline-formula><tex-math id=\"M2\">\\begin{document}$ t_*>1 $\\end{document}</tex-math></inline-formula> such that for each <inline-formula><tex-math id=\"M3\">\\begin{document}$ t\\in (0,t_*) $\\end{document}</tex-math></inline-formula> there exists a unique equilibrium state <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mu_t $\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\"M5\">\\begin{document}$ - t\\log J^uT $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\mu_t $\\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id=\"M7\">\\begin{document}$ T $\\end{document}</tex-math></inline-formula>-adapted. (In particular, the SRB measure is the unique equilibrium state for <inline-formula><tex-math id=\"M8\">\\begin{document}$ - \\log J^uT $\\end{document}</tex-math></inline-formula>.) We show that <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\mu_t $\\end{document}</tex-math></inline-formula> is exponentially mixing for Hölder observables, and the pressure function <inline-formula><tex-math id=\"M10\">\\begin{document}$ P(t) = \\sup_\\mu \\{h_\\mu -\\int t\\log J^uT d \\mu\\} $\\end{document}</tex-math></inline-formula> is analytic on <inline-formula><tex-math id=\"M11\">\\begin{document}$ (0,t_*) $\\end{document}</tex-math></inline-formula>. In addition, <inline-formula><tex-math id=\"M12\">\\begin{document}$ P(t) $\\end{document}</tex-math></inline-formula> is strictly convex if and only if <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\log J^uT $\\end{document}</tex-math></inline-formula> is not <inline-formula><tex-math id=\"M14\">\\begin{document}$ \\mu_t $\\end{document}</tex-math></inline-formula>-a.e. cohomologous to a constant, while, if there exist <inline-formula><tex-math id=\"M15\">\\begin{document}$ t_a\\ne t_b $\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\"M16\">\\begin{document}$ \\mu_{t_a} = \\mu_{t_b} $\\end{document}</tex-math></inline-formula>, then <inline-formula><tex-math id=\"M17\">\\begin{document}$ P(t) $\\end{document}</tex-math></inline-formula> is affine on <inline-formula><tex-math id=\"M18\">\\begin{document}$ (0,t_*) $\\end{document}</tex-math></inline-formula>. An additional sparse recurrence condition gives <inline-formula><tex-math id=\"M19\">\\begin{document}$ \\lim_{t\\downarrow 0} P(t) = P(0) $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Thermodynamic formalism for dispersing billiards\",\"authors\":\"V. Baladi, Mark F. Demers\",\"doi\":\"10.3934/jmd.2022013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>For any finite horizon Sinai billiard map <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ T $\\\\end{document}</tex-math></inline-formula> on the two-torus, we find <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ t_*>1 $\\\\end{document}</tex-math></inline-formula> such that for each <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ t\\\\in (0,t_*) $\\\\end{document}</tex-math></inline-formula> there exists a unique equilibrium state <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\mu_t $\\\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ - t\\\\log J^uT $\\\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\mu_t $\\\\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ T $\\\\end{document}</tex-math></inline-formula>-adapted. (In particular, the SRB measure is the unique equilibrium state for <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ - \\\\log J^uT $\\\\end{document}</tex-math></inline-formula>.) We show that <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ \\\\mu_t $\\\\end{document}</tex-math></inline-formula> is exponentially mixing for Hölder observables, and the pressure function <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ P(t) = \\\\sup_\\\\mu \\\\{h_\\\\mu -\\\\int t\\\\log J^uT d \\\\mu\\\\} $\\\\end{document}</tex-math></inline-formula> is analytic on <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ (0,t_*) $\\\\end{document}</tex-math></inline-formula>. In addition, <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ P(t) $\\\\end{document}</tex-math></inline-formula> is strictly convex if and only if <inline-formula><tex-math id=\\\"M13\\\">\\\\begin{document}$ \\\\log J^uT $\\\\end{document}</tex-math></inline-formula> is not <inline-formula><tex-math id=\\\"M14\\\">\\\\begin{document}$ \\\\mu_t $\\\\end{document}</tex-math></inline-formula>-a.e. cohomologous to a constant, while, if there exist <inline-formula><tex-math id=\\\"M15\\\">\\\\begin{document}$ t_a\\\\ne t_b $\\\\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id=\\\"M16\\\">\\\\begin{document}$ \\\\mu_{t_a} = \\\\mu_{t_b} $\\\\end{document}</tex-math></inline-formula>, then <inline-formula><tex-math id=\\\"M17\\\">\\\\begin{document}$ P(t) $\\\\end{document}</tex-math></inline-formula> is affine on <inline-formula><tex-math id=\\\"M18\\\">\\\\begin{document}$ (0,t_*) $\\\\end{document}</tex-math></inline-formula>. An additional sparse recurrence condition gives <inline-formula><tex-math id=\\\"M19\\\">\\\\begin{document}$ \\\\lim_{t\\\\downarrow 0} P(t) = P(0) $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2022013\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022013","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
For any finite horizon Sinai billiard map \begin{document}$ T $\end{document} on the two-torus, we find \begin{document}$ t_*>1 $\end{document} such that for each \begin{document}$ t\in (0,t_*) $\end{document} there exists a unique equilibrium state \begin{document}$ \mu_t $\end{document} for \begin{document}$ - t\log J^uT $\end{document}, and \begin{document}$ \mu_t $\end{document} is \begin{document}$ T $\end{document}-adapted. (In particular, the SRB measure is the unique equilibrium state for \begin{document}$ - \log J^uT $\end{document}.) We show that \begin{document}$ \mu_t $\end{document} is exponentially mixing for Hölder observables, and the pressure function \begin{document}$ P(t) = \sup_\mu \{h_\mu -\int t\log J^uT d \mu\} $\end{document} is analytic on \begin{document}$ (0,t_*) $\end{document}. In addition, \begin{document}$ P(t) $\end{document} is strictly convex if and only if \begin{document}$ \log J^uT $\end{document} is not \begin{document}$ \mu_t $\end{document}-a.e. cohomologous to a constant, while, if there exist \begin{document}$ t_a\ne t_b $\end{document} with \begin{document}$ \mu_{t_a} = \mu_{t_b} $\end{document}, then \begin{document}$ P(t) $\end{document} is affine on \begin{document}$ (0,t_*) $\end{document}. An additional sparse recurrence condition gives \begin{document}$ \lim_{t\downarrow 0} P(t) = P(0) $\end{document}.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.