视网膜眼底图像U-Net - KNN整合对糖尿病视网膜病变的有效诊断

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
V. Selvakumar, C. Akila
{"title":"视网膜眼底图像U-Net - KNN整合对糖尿病视网膜病变的有效诊断","authors":"V. Selvakumar, C. Akila","doi":"10.1080/00051144.2023.2251231","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy (DR) is a retinal disorder that may lead to blindness in people all over the world. The major cause of DR is diabetes for a longer period and early detection is the only solution to prevent the vision. This paper focuses on the classes of Normal eye (No DR), Mild NPDR (Non-Proliferative Diabetic Retinopathy), Moderate NPDR, Severe NPDR, and PDR. On retinal fundus images, an effective method for identifying diabetic retinopathy (DR) is proposed by combining the U-Net architecture with the K-nearest neighbours (KNN) algorithm. The U-Net architecture is used for segmenting exudates in retinal pictures, and the KNN algorithm is used for final classification. The combination of U-Net and KNN enables accurate feature extraction and efficient classification, effectively overcoming the computational challenges common to deep learning models. The experiments are carried out utilizing a publicly available dataset of retinal fundus images from Kaggle to assess the effectiveness of our suggested strategy. The proposed architecture provides precise output when compared to other models GoogleNet, ResNet18, and VGG16. The proposed model provides a training accuracy of 82.96% and detection of PDR with high accuracy in the short period which prevents loss of vision in early stage.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient diabetic retinopathy diagnosis through U-Net – KNN integration in retinal fundus images\",\"authors\":\"V. Selvakumar, C. Akila\",\"doi\":\"10.1080/00051144.2023.2251231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic retinopathy (DR) is a retinal disorder that may lead to blindness in people all over the world. The major cause of DR is diabetes for a longer period and early detection is the only solution to prevent the vision. This paper focuses on the classes of Normal eye (No DR), Mild NPDR (Non-Proliferative Diabetic Retinopathy), Moderate NPDR, Severe NPDR, and PDR. On retinal fundus images, an effective method for identifying diabetic retinopathy (DR) is proposed by combining the U-Net architecture with the K-nearest neighbours (KNN) algorithm. The U-Net architecture is used for segmenting exudates in retinal pictures, and the KNN algorithm is used for final classification. The combination of U-Net and KNN enables accurate feature extraction and efficient classification, effectively overcoming the computational challenges common to deep learning models. The experiments are carried out utilizing a publicly available dataset of retinal fundus images from Kaggle to assess the effectiveness of our suggested strategy. The proposed architecture provides precise output when compared to other models GoogleNet, ResNet18, and VGG16. The proposed model provides a training accuracy of 82.96% and detection of PDR with high accuracy in the short period which prevents loss of vision in early stage.\",\"PeriodicalId\":55412,\"journal\":{\"name\":\"Automatika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/00051144.2023.2251231\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2251231","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient diabetic retinopathy diagnosis through U-Net – KNN integration in retinal fundus images
Diabetic retinopathy (DR) is a retinal disorder that may lead to blindness in people all over the world. The major cause of DR is diabetes for a longer period and early detection is the only solution to prevent the vision. This paper focuses on the classes of Normal eye (No DR), Mild NPDR (Non-Proliferative Diabetic Retinopathy), Moderate NPDR, Severe NPDR, and PDR. On retinal fundus images, an effective method for identifying diabetic retinopathy (DR) is proposed by combining the U-Net architecture with the K-nearest neighbours (KNN) algorithm. The U-Net architecture is used for segmenting exudates in retinal pictures, and the KNN algorithm is used for final classification. The combination of U-Net and KNN enables accurate feature extraction and efficient classification, effectively overcoming the computational challenges common to deep learning models. The experiments are carried out utilizing a publicly available dataset of retinal fundus images from Kaggle to assess the effectiveness of our suggested strategy. The proposed architecture provides precise output when compared to other models GoogleNet, ResNet18, and VGG16. The proposed model provides a training accuracy of 82.96% and detection of PDR with high accuracy in the short period which prevents loss of vision in early stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatika
Automatika AUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍: AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope. AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信