{"title":"视网膜眼底图像U-Net - KNN整合对糖尿病视网膜病变的有效诊断","authors":"V. Selvakumar, C. Akila","doi":"10.1080/00051144.2023.2251231","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy (DR) is a retinal disorder that may lead to blindness in people all over the world. The major cause of DR is diabetes for a longer period and early detection is the only solution to prevent the vision. This paper focuses on the classes of Normal eye (No DR), Mild NPDR (Non-Proliferative Diabetic Retinopathy), Moderate NPDR, Severe NPDR, and PDR. On retinal fundus images, an effective method for identifying diabetic retinopathy (DR) is proposed by combining the U-Net architecture with the K-nearest neighbours (KNN) algorithm. The U-Net architecture is used for segmenting exudates in retinal pictures, and the KNN algorithm is used for final classification. The combination of U-Net and KNN enables accurate feature extraction and efficient classification, effectively overcoming the computational challenges common to deep learning models. The experiments are carried out utilizing a publicly available dataset of retinal fundus images from Kaggle to assess the effectiveness of our suggested strategy. The proposed architecture provides precise output when compared to other models GoogleNet, ResNet18, and VGG16. The proposed model provides a training accuracy of 82.96% and detection of PDR with high accuracy in the short period which prevents loss of vision in early stage.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient diabetic retinopathy diagnosis through U-Net – KNN integration in retinal fundus images\",\"authors\":\"V. Selvakumar, C. Akila\",\"doi\":\"10.1080/00051144.2023.2251231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic retinopathy (DR) is a retinal disorder that may lead to blindness in people all over the world. The major cause of DR is diabetes for a longer period and early detection is the only solution to prevent the vision. This paper focuses on the classes of Normal eye (No DR), Mild NPDR (Non-Proliferative Diabetic Retinopathy), Moderate NPDR, Severe NPDR, and PDR. On retinal fundus images, an effective method for identifying diabetic retinopathy (DR) is proposed by combining the U-Net architecture with the K-nearest neighbours (KNN) algorithm. The U-Net architecture is used for segmenting exudates in retinal pictures, and the KNN algorithm is used for final classification. The combination of U-Net and KNN enables accurate feature extraction and efficient classification, effectively overcoming the computational challenges common to deep learning models. The experiments are carried out utilizing a publicly available dataset of retinal fundus images from Kaggle to assess the effectiveness of our suggested strategy. The proposed architecture provides precise output when compared to other models GoogleNet, ResNet18, and VGG16. The proposed model provides a training accuracy of 82.96% and detection of PDR with high accuracy in the short period which prevents loss of vision in early stage.\",\"PeriodicalId\":55412,\"journal\":{\"name\":\"Automatika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/00051144.2023.2251231\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2251231","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Efficient diabetic retinopathy diagnosis through U-Net – KNN integration in retinal fundus images
Diabetic retinopathy (DR) is a retinal disorder that may lead to blindness in people all over the world. The major cause of DR is diabetes for a longer period and early detection is the only solution to prevent the vision. This paper focuses on the classes of Normal eye (No DR), Mild NPDR (Non-Proliferative Diabetic Retinopathy), Moderate NPDR, Severe NPDR, and PDR. On retinal fundus images, an effective method for identifying diabetic retinopathy (DR) is proposed by combining the U-Net architecture with the K-nearest neighbours (KNN) algorithm. The U-Net architecture is used for segmenting exudates in retinal pictures, and the KNN algorithm is used for final classification. The combination of U-Net and KNN enables accurate feature extraction and efficient classification, effectively overcoming the computational challenges common to deep learning models. The experiments are carried out utilizing a publicly available dataset of retinal fundus images from Kaggle to assess the effectiveness of our suggested strategy. The proposed architecture provides precise output when compared to other models GoogleNet, ResNet18, and VGG16. The proposed model provides a training accuracy of 82.96% and detection of PDR with high accuracy in the short period which prevents loss of vision in early stage.
AutomatikaAUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍:
AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope.
AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.