Caputo-Fabrizio分数阶导数意义下酶动力学模型的存在唯一性解

IF 1.4 Q2 MATHEMATICS, APPLIED
G. K. Edessa
{"title":"Caputo-Fabrizio分数阶导数意义下酶动力学模型的存在唯一性解","authors":"G. K. Edessa","doi":"10.1155/2022/1345919","DOIUrl":null,"url":null,"abstract":"In this paper, a model of the rates of enzyme-catalyzed chemical reactions in the sense of Caputo–Fabrizio a fractional derivative was investigated. Its existence and uniqueness as a solution of the model was proved by setting different criteria. An iterative numerical scheme was provided to support the findings. In order to verify the applicability of the result, numerical simulations using the MATLAB software package that confirms the analytical result was lucidly shown.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Existence and Uniqueness Solution of the Model of Enzyme Kinetics in the Sense of Caputo–Fabrizio Fractional Derivative\",\"authors\":\"G. K. Edessa\",\"doi\":\"10.1155/2022/1345919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a model of the rates of enzyme-catalyzed chemical reactions in the sense of Caputo–Fabrizio a fractional derivative was investigated. Its existence and uniqueness as a solution of the model was proved by setting different criteria. An iterative numerical scheme was provided to support the findings. In order to verify the applicability of the result, numerical simulations using the MATLAB software package that confirms the analytical result was lucidly shown.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1345919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/1345919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了Caputo–Fabrizio分数导数意义上的酶催化化学反应速率模型。通过设置不同的准则证明了它作为模型解的存在性和唯一性。提供了一个迭代数值格式来支持这一发现。为了验证结果的适用性,使用MATLAB软件包进行了数值模拟,清楚地表明了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Uniqueness Solution of the Model of Enzyme Kinetics in the Sense of Caputo–Fabrizio Fractional Derivative
In this paper, a model of the rates of enzyme-catalyzed chemical reactions in the sense of Caputo–Fabrizio a fractional derivative was investigated. Its existence and uniqueness as a solution of the model was proved by setting different criteria. An iterative numerical scheme was provided to support the findings. In order to verify the applicability of the result, numerical simulations using the MATLAB software package that confirms the analytical result was lucidly shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信