折射率气体计量数据格局展望

IF 4.4 2区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
P. Rourke
{"title":"折射率气体计量数据格局展望","authors":"P. Rourke","doi":"10.1063/5.0055412","DOIUrl":null,"url":null,"abstract":"The redefinition of the kelvin has increased focus on thermometry techniques that use the newly fixed value of the Boltzmann constant to realize thermodynamic temperature. One such technique that has advanced considerably in recent years is refractive-index gas thermometry. Generalized as refractive-index gas metrology (RIGM), this also includes a range of applications outside of temperature realizations, such as pressure standards and measurements of the physical properties of gases. Here, the current data situation in the field is reviewed, encompassing the latest developments and remaining challenges, in order to suggest possible approaches for reducing RIGM uncertainties and improving RIGM applications. New analyses of existing experimental literature data are presented for the second density virial coefficient Bρ of helium, neon, argon, and nitrogen; the third density virial coefficient Cρ of nitrogen; and the third dielectric virial coefficient Ce of helium, neon, and argon. A need is identified for more accurate reference-quality datasets to be measured or calculated in several areas, with robust uncertainty budgets, to support future RIGM advancements. The most urgent of these are the bulk modulus of copper; thermodynamic accuracy of the International Temperature Scale of 1990; molar optical refractivity AR of neon, argon, and nitrogen; diamagnetic susceptibility χ0 of neon and argon; second density virial coefficient Bρ of argon; third dielectric virial coefficient Ce of helium, neon, and argon; and third optical refractivity virial coefficient CR of helium and neon.","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":"1 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Perspective on the Refractive-Index Gas Metrology Data Landscape\",\"authors\":\"P. Rourke\",\"doi\":\"10.1063/5.0055412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The redefinition of the kelvin has increased focus on thermometry techniques that use the newly fixed value of the Boltzmann constant to realize thermodynamic temperature. One such technique that has advanced considerably in recent years is refractive-index gas thermometry. Generalized as refractive-index gas metrology (RIGM), this also includes a range of applications outside of temperature realizations, such as pressure standards and measurements of the physical properties of gases. Here, the current data situation in the field is reviewed, encompassing the latest developments and remaining challenges, in order to suggest possible approaches for reducing RIGM uncertainties and improving RIGM applications. New analyses of existing experimental literature data are presented for the second density virial coefficient Bρ of helium, neon, argon, and nitrogen; the third density virial coefficient Cρ of nitrogen; and the third dielectric virial coefficient Ce of helium, neon, and argon. A need is identified for more accurate reference-quality datasets to be measured or calculated in several areas, with robust uncertainty budgets, to support future RIGM advancements. The most urgent of these are the bulk modulus of copper; thermodynamic accuracy of the International Temperature Scale of 1990; molar optical refractivity AR of neon, argon, and nitrogen; diamagnetic susceptibility χ0 of neon and argon; second density virial coefficient Bρ of argon; third dielectric virial coefficient Ce of helium, neon, and argon; and third optical refractivity virial coefficient CR of helium and neon.\",\"PeriodicalId\":16783,\"journal\":{\"name\":\"Journal of Physical and Chemical Reference Data\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical and Chemical Reference Data\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0055412\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical and Chemical Reference Data","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0055412","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13

摘要

开尔文的重新定义增加了人们对测温技术的关注,这些技术使用波尔兹曼常数的新固定值来实现热力学温度。其中一项近年来取得长足进步的技术是折射率气体测温技术。广义的折射率气体计量(RIGM)也包括温度实现之外的一系列应用,例如压力标准和气体物理性质的测量。本文回顾了该领域的当前数据状况,包括最新的发展和仍然存在的挑战,以提出减少RIGM不确定性和改进RIGM应用的可能方法。本文对氦、氖、氩和氮的二次密度维里系数Bρ进行了新的分析;氮的第三密度维里系数ρ;以及氦、氖、氩的第三介电维里系数Ce。确定需要在几个领域测量或计算更准确的参考质量数据集,并具有强大的不确定性预算,以支持未来的RIGM进展。其中最紧迫的是铜的体积模数;1990年国际温标的热力学精度氖、氩、氮的摩尔光学折射率AR;氖、氩的抗磁化率χ0;氩的第二密度维里系数Bρ;氦、氖、氩的第三介电维里系数Ce;第三是氦和氖的光学折射率维里系数CR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perspective on the Refractive-Index Gas Metrology Data Landscape
The redefinition of the kelvin has increased focus on thermometry techniques that use the newly fixed value of the Boltzmann constant to realize thermodynamic temperature. One such technique that has advanced considerably in recent years is refractive-index gas thermometry. Generalized as refractive-index gas metrology (RIGM), this also includes a range of applications outside of temperature realizations, such as pressure standards and measurements of the physical properties of gases. Here, the current data situation in the field is reviewed, encompassing the latest developments and remaining challenges, in order to suggest possible approaches for reducing RIGM uncertainties and improving RIGM applications. New analyses of existing experimental literature data are presented for the second density virial coefficient Bρ of helium, neon, argon, and nitrogen; the third density virial coefficient Cρ of nitrogen; and the third dielectric virial coefficient Ce of helium, neon, and argon. A need is identified for more accurate reference-quality datasets to be measured or calculated in several areas, with robust uncertainty budgets, to support future RIGM advancements. The most urgent of these are the bulk modulus of copper; thermodynamic accuracy of the International Temperature Scale of 1990; molar optical refractivity AR of neon, argon, and nitrogen; diamagnetic susceptibility χ0 of neon and argon; second density virial coefficient Bρ of argon; third dielectric virial coefficient Ce of helium, neon, and argon; and third optical refractivity virial coefficient CR of helium and neon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
11.60%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Journal of Physical and Chemical Reference Data (JPCRD) is published by AIP Publishing for the U.S. Department of Commerce National Institute of Standards and Technology (NIST). The journal provides critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation, preferably with uncertainty analysis. Critical reviews may also be included if they document a reference database, review the data situation in a field, review reference-quality measurement techniques, or review data evaluation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信