扩展图上直角Artin群作用的非圆柱性

Pub Date : 2022-12-06 DOI:10.1142/s021819672350056x
Eonkyung Lee, Sangjin Lee
{"title":"扩展图上直角Artin群作用的非圆柱性","authors":"Eonkyung Lee, Sangjin Lee","doi":"10.1142/s021819672350056x","DOIUrl":null,"url":null,"abstract":"The action of a right-angled Artin group on its extension graph is known to be acylindrical because the cardinality of the so-called $r$-quasi-stabilizer of a pair of distant points is bounded above by a function of $r$. The known upper bound of the cardinality is an exponential function of $r$. In this paper we show that the $r$-quasi-stabilizer is a subset of a cyclic group and its cardinality is bounded above by a linear function of $r$. This is done by exploring lattice theoretic properties of group elements, studying prefixes of powers and extending the uniqueness of quasi-roots from word length to star length. We also improve the known lower bound for the minimal asymptotic translation length of a right angled Artin group on its extension graph.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acylindricity of the action of right-angled Artin groups on extension graphs\",\"authors\":\"Eonkyung Lee, Sangjin Lee\",\"doi\":\"10.1142/s021819672350056x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The action of a right-angled Artin group on its extension graph is known to be acylindrical because the cardinality of the so-called $r$-quasi-stabilizer of a pair of distant points is bounded above by a function of $r$. The known upper bound of the cardinality is an exponential function of $r$. In this paper we show that the $r$-quasi-stabilizer is a subset of a cyclic group and its cardinality is bounded above by a linear function of $r$. This is done by exploring lattice theoretic properties of group elements, studying prefixes of powers and extending the uniqueness of quasi-roots from word length to star length. We also improve the known lower bound for the minimal asymptotic translation length of a right angled Artin group on its extension graph.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021819672350056x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021819672350056x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直角Artin群在其扩张图上的作用是已知的非柱面的,因为一对远点的所谓$r$-拟稳定器的基数在上面由$r$的函数定界。基数的已知上界是$r$的指数函数。本文证明了$r$-拟稳定器是循环群的一个子集,其基数在上面由$r$的线性函数定界。这是通过探索群元素的格论性质,研究幂的前缀,并将拟根的唯一性从字长扩展到星长来实现的。我们还改进了直角Artin群在其扩张图上的最小渐近平移长度的已知下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Acylindricity of the action of right-angled Artin groups on extension graphs
The action of a right-angled Artin group on its extension graph is known to be acylindrical because the cardinality of the so-called $r$-quasi-stabilizer of a pair of distant points is bounded above by a function of $r$. The known upper bound of the cardinality is an exponential function of $r$. In this paper we show that the $r$-quasi-stabilizer is a subset of a cyclic group and its cardinality is bounded above by a linear function of $r$. This is done by exploring lattice theoretic properties of group elements, studying prefixes of powers and extending the uniqueness of quasi-roots from word length to star length. We also improve the known lower bound for the minimal asymptotic translation length of a right angled Artin group on its extension graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信